
PART 2A (3 pts)

Use phrase with splicing and concatenation of two items to create the

string 'tryher'.

phrase = 'thermometry'

result=phrase[-3:]+phrase[1:4]

ALTERNATE OPTIONS BASED ON RESULT TO FORM USING slice-[a:b]

‘try’: 8 or -3 in a and blank or 11 in b position.

‘her’: 1 or -10 in a position and 4 or -7 in b position

PART 2B (3 pts)

#Use phrase with indexing and concatenation of three items to create the

string ‘mod’.

phrase = ['doberman']

result=phrase[0][-3]+phrase[0][1]+phrase[0][0]

ALTERNATE SOLUTIONS:

-first index position must be [0] for each index

-second index position: ‘m’ can be -3 or 5,

 ‘o’ can be 1 or -7,

 ‘d’ can be 0 or -8

PART 2C (3 pts)

Use lst with indexing and concatenation to create the string 'top'.

lst = ['computer']

result=lst[0][-3]+lst[0][1]+lst[0][3]

ALTERNATE SOLUTIONS:

-first position must be [0] for each index

-second position: ‘t’ can be -3 or 5,

 ‘o’ can be 1 or -7,

 ‘p’ can be 3 or -5

PART 2D (3 pts)

Use lst with indexing and the concatenation of two items to make the

string 'fond'.

lst = [['first', 'second', 'third'], 'fourth']

NOTE: THIS PROBLEM DID NOT LIST PROPERLY TO USE SPLICING AS WELL. AS A

RESULT, POINTS NOT DEDUCTED IF USED A SOLUTION THAT CONCATENATED 4 ITEMS

AND NOT 2.

result=lst[-1][0:2]+lst[0][1][4:]

ALTERNATE SOLUTIONS (CONCATENATION OF TWO ITEMS):

#'fo': first position can be 1 or -1

second position (slice) can be [0:2], [:2], [-6:-4]

#'nd': first position must be 0 or -2

second position must be 1 or -1

third position (slice) must be [-2:], [4:]

#’f’: lst[1][0]

#’ond’: lst[0][1][3:] or lst[0][1][-3:]

ALTERNATE SOLUTIONS (CONCATENATION OF FOUR ITEMS):

#‘f’: lst[0][0][0] or lst[1][0] or lst[-1][0]..other options

available as well

#’o’: lst[0][1][3] or lst[1][1] or lst[-1][1]..other options

#’n’: lst[0][1][-2] or lst[0][1][4]..other options

#’d’: lst[0][1][-1] or lst[0][1][5] or lst[0][2][-1] or

 lst[0][-1][-1]..other options

PART 2E (3 pts)

Use lst with indexing to create ['one', 'two'].

lst = [['one', 'two'], 'three', ['four']]

POSSIBLE SOLUTIONS BELOW. ONLY ONE IS NECESSARY

result=lst[0]

result=lst[-2]

PART 2F (3 pts)

Use only lst with slicing to create the string 'Green'.

lst = [['Durham','Greensboro'], ['Charlotte'], 'Raleigh']

result=lst[0][-1][0:5]

ALTERNATE SOLUTIONS

first index position: 0 or -3

second index position: -1 or 1

slice: [:5] or [0:5] or [-10:-5]

PART 2G (3 pts)

Using slicing only, create a clone of lst

lst = ['pear',['plum', 10], 'apple']

result=lst[:]

ALTERNATE SOLUTIONS

lst[0:]

lst[0:4]

lst[-3:]

PART 2H (3 pts)

Using the minimal slicing and concatenation, create the string "Hove".

phrase = 'Houston we have a problem.'

result=phrase[0:2]+phrase[13:15]

ALTERNATE SOLUTION:

#'Ho': phrase[0:2] phrase[:2] or phrase[-26:-24]

#'ve': phrase[-13:-11] or phrase[13:15]

PART 2I (3 pts)

Using the minimal indexing and concatenation, create '823'.

lst = ['55', '24', '8', '3', '61']

result=lst[2]+lst[1][0]+lst[-2]

ALTERNATE SOLUTION:

#'8': lst[2] or lst[-3] NOTE: OK if add second index(lst[2][0])

#'2': first position: 1 or -4

 second position: 0 or -2

#'3': lst[-2] or lst[3] NOTE: OK if add second index(lst[-2][0])

PART 2J (3 pts)

Using the minimal indexing and concatenation, create 'Fall2021'.

lst = ['Winter', 2020, 'Spring', '2021', 'fall', 2019, 'Fall']]

result=lst[-1]+lst[3]

ALTERNATE SOLUTION:

#'Fall': lst[-1] or lst[6]

#'2021': lst[3] or lst[-4]

Problem 3A (10 points)

def compareString(text1, text2):

 if text1 >= text2:

 phrase = text1 + text2

 else:

 phrase = text2 + text1

 length = len(phrase)

 lst = [phrase, length]

 return lst

Problem 3B (10 points)

There are a number of ways they may have solved this. These are but 2

examples. Should you have questions, you can always create a version of

this program in PyCharm and run their code. Though this is not required.

def purchase(toddler, child, adult, senior):

 price_child=child*5

 price_adult=adult*10

 price_senior=senior*5

 tix=toddler+child+adult+senior

 price=price_child+price_adult+price_senior

 print("Quantity:", tix, " Price:$", price)

OR

def purchase(toddler, child, adult, senior):

 price=0

 tix=0

 #toddler info, no charge for tix

 tix += toddler

 #child info, $5 per tix

 tix += child

 price += (child*5)

 #adult info, $10 per tix

 tix += adult

 price +=(adult*10)

 #senior info, $5 per tix

 tix += senior

 price +=(senior*5)

 print("Quantity:", tix, " Price:$", price)

Problem 4 (8 points)

#Part A (2 points)

What is the expected output of the program?

[['Michele', 'Teri'], 'Tori', ['Michele', 'Teri']]

#Part B (6 points)

Using only indexing and two new lines of code (assume they would be lines 9 and 10), modify list1
to create ['Tori', 'Tori', 'Tori']

list1[0]='Tori'

list1[-1]='Tori'

ALTERNATE SOLUTION

list1[0]= list1[1] OR list1[0]= list1[-2]

list1[2]= list1[1] OR list1[2]= list1[-2]

#Part 5 (6 points)

This program doesn't execute. It contains at least one error.

#PART A (3 points)

What line(s) of code contain the error?

Answer: Line 2, 11, and either line 20/21.

NOTE: This problem was designed to get students thinking about reading

code. Line 2 Is a clear error. Line 11 is also an error, because it

should be if state 1 == state 2.

They may have different interpretations of errors re: lines 20/21.

Someone may decide (based on their review, that instead of changing lines

20/21, that a return statement is needed in the function (around line

15). The code should still work correctly throughout, if so.

#PART B (3 points)

What errors are present?

Answers: Students should catch at least 3 errors. One syntax and two

semantics. See below.

Line 2: no ==

Line 11: should be state1 and state2 and not name1 and name2.

Line 20: assumes there is a return statement when calling compare.

Line 21(if they identified line 20 as error): won’t output correct

information (will output “None” as it is).

POSSIBILITY: Also (may not have line number): compare function could have

a return statement as written (if not noting lines 20/21 as errors) OR

line 20/21 need to be rewritten to NOT assign compare function to

variables and print results.

#PART C (4 points)

Rewrite the line(s) of code with the correct version only as (for example) "X: corrected code", where
X is the line number of the code to correct and corrected code is the rewritten line of code.

Answer:

Line 2: if len(state1)==len(state2):

Line 11: if state1==state2

Line 20: compare(name1, name3)

Line 21: delete this line

POSSIBILITY: Line 15: return XXX where XXX just needs to be a valid value

in the program at this point. This will be acceptable here in lieu of

line 20/21 corrections.

