
Test 2: Compsci 101

Owen Astrachan

November 15, 2012

Name:

NetID/Login:

Honor code acknowledgment (signature)

value grade
Problem 1 24 pts.

Problem 2 16 pts.

Problem 3 20 pts.

Problem 3 16 pts.

TOTAL: 76 pts.

This test has 8 pages (and there is an APT handout), be sure your test has them all. Do NOT spend too
much time on one question — remember that this class lasts 75 minutes.
In writing code you do not need to worry about specifying the proper import statements. Don’t worry
about getting function or method names exactly right. Assume that all libraries and packages we’ve discussed
are imported in any code you write.

1

PROBLEM 1 : (Stun Chaos Tipi (24 points))

You’ll be asked to write code that references the list nuts below. The Python code you write should work
with any values stored in the list nuts. You can write one line of code or many for each of the tasks below.

nuts = ["cashew", "filbert", "chestnut", "coconut", "macadamia", "peanut", "pecan" \
"peanut", "peanut", "macadamia", "cashew"]

Part A (4 points)
Write code to store in variable unic the number of different values stored in nuts that begin with the letter
’c’ (in the example this value is 3: "cashew", "chestnut", "coconut").

Part B (4 points)
Write code to store in solo the number of strings in nuts that occur exactly once, this would be four in the
example above: "filbert", "chestnut", "coconut", and "pecan" each occur once.

Part C (4 points)
Write code to store in truenut a list of the (unique) strings in nuts that end with ’nut’. In the example
above this is [chestnut,coconut,peanut] (order of words doesn’t matter)

2

Part D (6 points)
Write code to store in nuttiest the string that occurs most often in nuts. This is "peanut" in the example
above. Assume the string that occurs most often is unique, don’t worry about breaking ties.

Part E (6 points)
Write code to store in freqs the unique strings in nuts sorted by number of times each string oc-
curs with the least frequently occuring string first. For strings that occur the same number of
times, break ties alphabetically. For example, for the list nuts above the value stored in freqs is
["chestnut", "coconut", "filbert", "pecan", "cashew", "macadamia", "peanut"].

3

PROBLEM 2 : (Songs in the Key of Life (16 points))

A data files stores purchase from an online music store like iTunes, part of such a data file, purchases.txt,
is shown below.

ola@cs.duke.edu,Light My Fire,The Doors,0.99
rcd@yahoo.com,Ice Ice Baby,Vanilla Ice,0.99
ola@cs.duke.edu,Your Smiling Face,James Taylor,0.99
rbo@gmail.com,The Cave,Mumford and Sons,1.29
rcd@yahoo.com,Raise Your Glass,P!ink,1.29
rbo@gmail.com,Sleepyhead,Passion Pit,0.99
rbo@gmail.com,Landfill,Daughter,0.99
ola@cs.duke.edu,Raise Your Glass,P!ink,1.29
rbo@gmail.com,Raise Your Glass,P!ink,1.29

Each line has four strings separated by commas as shown: email address, track purchased, artist/group
name, and price.
The code below, when run on the data file above, generates the output shown. You’ll be asked to write code
that processes a data file in this format.

def datadump(source):

for line in source:
line = line.strip().split(",")
print line

datadump("purchases.txt")

If "purchases.txt" is the name of the file shown, the code above will print:

[’ola@cs.duke.edu’, ’Light My Fire’, ’The Doors’, ’0.99’]
[’rcd@yahoo.com’, ’Ice Ice Baby’, ’Vanilla Ice’, ’0.99’]
[’ola@cs.duke.edu’, ’Your Smiling Face’, ’James Taylor’, ’0.99’]
[’rbo@gmail.com’, ’The Cave’, ’Mumford and Sons’, ’1.29’]
[’rcd@yahoo.com’, ’Raise Your Glass’, ’P!ink’, ’1.29’]
[’rbo@gmail.com’, ’Sleepyhead’, ’Passion Pit’, ’0.99’]
[’rbo@gmail.com’, ’Landfill’, ’Daughter’, ’0.99’]
[’ola@cs.duke.edu’, ’Raise Your Glass’, ’P!ink’, ’1.29’]
[’rbo@gmail.com’, ’Raise Your Glass’, ’P!ink’, ’1.29’]

4

Part A (8 points)
Write code to print the email address of each unique customer and the amount of money spent by that
customer. The email addresses should be printed in order of money spent, with the greatest amount spent
first. Don’t worry about ties.
For the data file above your code should print:

rbo@gmail.com $4.56
ola@cs.duke.edu $3.27
rcd@yahoo.com $2.28

def purchases(source):
#you write code here to print email, money spent

if __name__ == "__main__":
purchases("purchases.txt")

5

Part B (8 points)
Suppose a student writes code to create a dictionary in which the key is an email address and in which the
corresponding value is a list of songs purchased by the person with the given email address. For the data
file shown the dictionary would be:

{’rcd@yahoo.com’: [’Ice Ice Baby’, ’Raise Your Glass’],
’ola@cs.duke.edu’: [’Light My Fire’, ’Landfill’, ’Raise Your Glass’],
’rbo@gmail.com’: [’The Cave’, ’Sleepyhead’, ’Landfill’, ’Raise Your Glass’]
}

Write a function topsong whose parameter is a dictionary in the format described ; the function returns a
string: the song purchased by more people than any other song. Don’t worry about ties.

def topsong(songd):
’’’
songd is dictionary: key is email address
corresponding value is list of song titles purchased
by person with email address

returns: song bought by most people
’’’

6

PROBLEM 3 : (Adenosine Triphosphate (20 points))

Part A (10 points)
The write-up for the APT ContestWinner is at the end of this test. You’re given code below that uses the
following two-step idea to solve the problem, the code is only partially complete.

1. Find the number in events that occurs maximally/most-often; store the maximal number of occur-
rences in variable most.

2. Process the elements of events in order, updating a dictionary of how many times each element has
occurred, when this count is the same as most, return the element.

In the third example of the APT writeup, both 123 and 456 occur three times, so the maximal value is three.
As the list [123,123,456,456,456,123] is processed in step-two, the count of 456 becomes three when the
count of 123 is still two. So 456 is returned as soon as its stored count becomes three.
Complete the code below by adding fewer than eleven lines of code so that the function is correct (all green)
and the idea above is used to get all-green.

def getWinner(events):
most = max([events.count(x) for x in events])
d = {}
for elt in events:

7

Part B (10 points)
The APT KingSort is attached at the end of the test. To solve this APT a helper function that returns
an int corresponding to a roman numeral as a string is used, e.g., roman_to_int("XLIV") returns 44,
roman_to_int("III") returns 3, roman_to_int("XXXIX") returns 39 — in general assume that the function
roman_to_int called in the code below is correct for use in the APT. You are to add two lines of code in
the function getSorted below so that it is all green. Note that the return statement refers to a list named
tups so be sure to assign a value to a variable of that name.
Each of the two lines you write should call sorted and should specify both a list and a key to sort on.
This means that each line should refer to a list (being sorted) and use key=operator.itemgetter with an
appropriate value.
Note that "Charles VII" should come before "Jean II" in the final list returned.
Briefly explain why you wrote each line as well as the order in which the lines occur

def roman_to_int(rom):
if rom == "I": return 1
if rom == "II": return 2
rest not shown

def getSortedList(kings):
pairs = [x.split() for x in kings]
data = [(x[0],x[1],roman_to_int(x[1])) for x in pairs]

return [x[0]+" "+x[1] for x in tups]

Briefly explain why you wrote each line as well as the order in which the lines occur

8

PROBLEM 4 : (Anthropo, Homeo, Meta, Poly (16 points))

Two words are isomorphic if they have the same pattern: each letter in one word maps to a corresponding
letter in the other word. Mapping a letter means replacing it by another without re-using a letter in the
replacement. For example:

• "abca" and "zbxz" are isomorphic since we map ’a’ to ’z’, ’b’ to ’b’, and ’c’ to ’x’.

• "abca" and "zxxz" are not isomorphic since we can map ’a’ to ’z’ and ’b’ to ’x’, but we cannot map
’c’ to ’x’ since ’x’ has already been used in being mapped to by ’b’. This is a re-use error in re-using
’x’.

• "abca" and "zxyp" are not isomorphic since we map ’a’ to ’z’, map ’b’ to ’x’, map ’c’ to ’y’, but we
cannot map ’a’ to ’p’ since ’a’ is already mapped to ’z’. This is a conflict error in mapping ’a’.

Each letter must map to a letter, no two letters can map to the same letter, but a letter can map to itself.
Part A: (6 points)
Fill in the table by indicating which pairs of words are isomorphic. If words are not isomorphic, indicate
why.
words isomorphic? reason
"aab", "ccz" yes

"xyza", "abcb" no ’y’ and ’a’ both map to ’b’, re-use on ’b’

"aabbc", "xxyyc"

"abab", "xyxy"

"aab", "bba"

"abcdc", "xyzyz"

"aacdc", "bbzfy"

"abcda", "abcfa"

9

Part B (6 points)
Write the function iso below that returns True if its two string parameters are isomorphic and returns False
otherwise. The strings have the same length.

def iso(a,b):
’’’
a and b are strings
return True if a is isomorphic to b, False otherwise
’’’
if len(a) != len(b):

return False

10

Part C: (4 points)
Complete the function pair_count that returns the number of unordered pairs that are isomorphic in a list
of strings. Call the function iso and assume it works as specified. Do not write more than five lines of code.
For example:
call return isomorphic pairs
pair_count(["abca", "zbxz", "opqr"]) 1 ("abca","zbxz") is the only isomorphic pair

pair_count(["aa","ab","bb", "cc","cd"] 4 ("aa","bb"), ("aa","cc"), ("ab","cd") ("bb","cc")

Complete the function below by calling iso:

def pair_count(words):
’’’
words is a list of strings, return number
of pairs of isomorphic strings in words
’’’

c = 0

for i in range(len(words)):

for j in range(i+1,len(words)):

return c

11

