
PROBLEM 1 : (Myrmecophagous? 24 points)

Write Python statement(s)/expression(s) to solve each of the problems below.

Consider the list lista below used to illustrate each problem.

lista = ["sloth", "aardvark", "pangolin", "pangolin", \
"aardvark", "sloth", "sloth", "numbat","anteater"]

This list is used to illustrate the problems, but the code you write should work with any values stored in

lista, don’t write code that depends on any particular values stored in the list.

Part A (4 points)

Write Python code that stores in variable uniq the number of different values in lista — this is five in the

example above since the five different strings in lista are ’sloth’, ’aardvark’, ’pangolin’, ’numbat’, ’anteater’.

Part B (4 points)

Write Python code that stores in variable smalls a list of of the strings in lista that have fewer than six

letters in them. This would be ["sloth", "sloth", "sloth"] in the example above. The words in smalls
should be in the same order they appear in lista.

Part C (4 points)

Write Python code that stores in variable most the number of times the most frequently occurring string in

lista occurs — this is three in the example above (for "sloth").

2



Part D (12 points)

Write Python code that stores in variable ordered a list of the unique strings in lista in order from most

frequently occuring to least frequently occuring. Ties should be broken alphabetically, e.g., "aardvark"
appears before "pangolin" in ordered below (using lista as above) because they both occur twice but

"aardvark" comes before "pangolin" alphabetically. Using lista above the values stored in ordered are:

ordered == ["sloth", "aardvark", "pangolin", "anteater", "numbat"]

because the number of occurrences of each of these is 3, 2, 2, 1, and 1, respectively. Note that "anteater"
is alphabetically before "numbat" and both occur one time. (You’ll earn more than half-credit if strings are

ordered correctly by number of occurrences, but you don’t break ties alphabetically.)

3



Part C (8 points)

In the Jotto program the function get_guess has the documentation shown below when the module

jottoModel.py is snarfed/copied for the assignment.

def get_guess():
"""
Choose a random word from _possiblewords, remove it from
_possiblewords so it won’t be guessed again, and return it.
Update all state needed to indicate a guess has been made.
"""

Many students wrote lines of code similar to the following for get_guess:

global _guessed, _possiblewords, _gcount
_guessed = random.choice(_possiblewords)
_gcount += 1
return _guessed

First, briefly explain the purpose of each of the four lines of code in the context of playing Jotto with this

code. Be sure you explain the purpose of each global variable and how it is used.

Then, briefly explain why the function shown above may often play the game correctly, but why it does

not satisfy the documentation/comment. In doing so you should explain why this code could result in the

computer guessing “break” several times in a row when the player is thinking of a secret word “baker” that

the computer is trying to guess.

5



Part D (8 points)

Program

The program below generates the output on the right when run,

showing that each simulated dice roll (a,b) occurs roughly the same

number of times. However, the number of times each sum is rolled

is different since there is only one way to roll a two: (1,1), but six

ways to roll a seven: (1,6), (2,5), (3,4), (4,3), (5,2), (6,1). Write

the function get_totals that returns a dictionary in which the key

is a number from 2-12, inclusive, representing the sum of rolling

two simulated dice; the corresponding value is the number of times

the total occurs. The parameter to get_totals is the dictionary

returned by track_rolls.

import random

def get_roll():
return (random.randint(1,6), random.randint(1,6))

def track_rolls(repeats):
d = {}
for x in range(0,repeats):

roll = get_roll()
if roll not in d:

d[roll] = 0
d[roll] += 1

for key in sorted(d.keys()):
print key,d[key]

return d

def main():
d = track_rolls(10000)

if __name__ == "__main__":
main()

For example, adding the line p = get_totals(d) in the function

main and printing the contents of p should result in the output below

given a dictionary storing information as shown on the right (the

output won’t necessarily be sorted by sum):

2 263
3 575
4 875
5 1121
6 1386
7 1627
8 1299
9 1152
10 888
11 531
12 283

Output from Running Program

(1, 1) 263
(1, 2) 283
(1, 3) 289
(1, 4) 261
(1, 5) 293
(1, 6) 270
(2, 1) 292
(2, 2) 297
(2, 3) 269
(2, 4) 297
(2, 5) 270
(2, 6) 254
(3, 1) 289
(3, 2) 284
(3, 3) 272
(3, 4) 245
(3, 5) 242
(3, 6) 295
(4, 1) 307
(4, 2) 246
(4, 3) 262
(4, 4) 273
(4, 5) 308
(4, 6) 302
(5, 1) 278
(5, 2) 301
(5, 3) 261
(5, 4) 254
(5, 5) 285
(5, 6) 278
(6, 1) 279
(6, 2) 269
(6, 3) 295
(6, 4) 301
(6, 5) 253
(6, 6) 283

(write code on next page)

6



def get_totals(rolld):
"""
rolld is a dictionary in which (a,b) tuples are
the keys, the corresponding value is the number of times
(a,b) was rolled in a dice simulation. Return dictionary
in which keys are unique values of a+b for (a,b) in
rolld and value is number of times sum a+b occurs for
each key
"""

7



PROBLEM 4 : (Top Songs (10 points))

Rolling Stone magazine published a list of the top 500 songs of all time in 2004 and updated the list in 2010.

A file stores the song, the artist, and the year the song was released as shown below.

Like a Rolling Stone:Bob Dylan:1965
(I Can’t Get No) Satisfaction:The Rolling Stones:1965
Imagine:John Lennon:1971
What’s Going On:Marvin Gaye:1971
...
Born to Run:Bruce Springsteen:1975
Help!:The Beatles:1965

Write the function artists that returns a dictionary in which the key is an artist (group, singer) and the

corresponding value is a list of the song titles from that artist. For example, both of these entries would

appear in the dictionary returned:

"The Beatles" : ["Hey Jude", "Yesterday", "I Want to Hold Your Hand", "Help!", ...]
"The Rolling Stones" : ["(I Can’t Get No) Satisfaction", "Sympathy for the Devil", ...]

The parameter filename is the name of a file as shown above. Return the dictionary described.

def artists(filename):
"""
return dictionary in proper format given parameter
filename which has song information in proper format
"""

f = open(filename)

f.close()

10






