
Test 2: Compsci 101

Owen Astrachan and Kristin Stephens-Martinez

April 10, 2018

Name:

NetID/Login:

Section Number: (01-Astrachan, 02-Stephens-Martinez):

Honor code acknowledgment (signature)

value grade

Problem 1 29 pts.

Problem 2 12 pts.

Problem 3 13 pts.

Problem 4 20 pts.

TOTAL: 74 pts.

This test has 12 pages be sure your test has them all. Do NOT spend too much time on one question —

remember that this class lasts 75 minutes.

In writing code you do not need to worry about specifying the proper import statements. Don’t worry

about getting function or method names exactly right. Assume that all libraries and packages we’ve discussed

are imported in any code you write.

Be sure your name and net-id are legible on this page and that your net-id appears at the top
of every page.

There is one blank pages page at the end of the test for extra work-space.

1

Test 2 NetID: 101 Spring 2018

PROBLEM 1 : (What will Python display? (29 points))

Part A (20 points)

Write the output for each print statement. Write the output in the right-column under OUTPUT.

CODE OUTPUT

lst = [x for x in range(5) if x >= 3]

print(lst)

lst = [x+3 for x in range(5) if x % 2 == 0]

print(lst)

lst = [’a’, ’b’]

lst.append([’c’, ’d’])

print(lst)

lst = [1, 2]

lst = lst + [3, 4]

print(lst)

lst = [(’sedan’, ’car’),

(’dumpster’, ’truck’),

(’hatchback’, ’car’),

(’cruiser’, ’motorcycle’)]

lst = sorted(lst)

print(lst[0])

lst = sorted(lst, key = operator.itemgetter(1))

print(lst[0])

s1 = set([1, 2, 2, 3, 3, 3])

print(sorted(s1))

s2 = set([2, 3, 4, 5, 5])

print(sorted(s1 | s2))

print(sorted(s1.intersection(s2)))

print(sorted(s2 - s1))

d = {’bi’: 2, ’di’: 2, ’tetra’: 4, ’hepta’: 7}

d[’septa’] = 7

print(sorted(d.keys()))

setKey = set(d.keys())

setVal = set(d.values())

print(len(setKey) == len(setVal))

print(7 in d)

2

Test 2 NetID: 101 Spring 2018

Part B (9 points)

What is the output of each of the print statements below? Write the output after each print state-
ment.

desserts = ’candy donut apple pie jelly beans bonbon brownie cupcake’

d = {}

for dessert in desserts.split():

first = dessert[0]

if first not in d:

d[first] = []

d[first].append(dessert)

tmp = [(len(v), k, v) for k,v in d.items()]

tmp = sorted(tmp, reverse=True)

print(sorted(d.keys()))

print(d[’c’])

print(tmp[0])

3

Test 2 NetID: 101 Spring 2018

PROBLEM 2 : (Patience and Charity (12 points))

The CharityDonor APT problem statement is with the exam reference sheet. Two all green solutions are

shown below. You’ll be asked questions about these solutions.

Solution A

Solution B

(problems on next page)

4

Test 2 NetID: 101 Spring 2018

Part A (3 points)

The problem statement says that if more than one donor gives the maximal amount that ties should be broken

alphabetically. For Solution A, explain how the code in lines 19-23 ensures that ties for the maximal donor

will be broken automatically. Make reference to the code by line number in your explanation.

Part B (3 points)

The problem statement says that if more than one donor gives the maximal amount that ties should be broken

alphabetically. For Solution B, explain how the code in lines 16-18 ensures that ties for the maximal donor

will be broken automatically. Make reference to the code by line number in your explanation.

5

Test 2 NetID: 101 Spring 2018

Part C (3 points)

Explain the purpose of each of lines 13, 14, and 15 in Solution A as they relate to solving the problem.

Part D (3 points)

Explain the purpose of each of lines 12 and 13 in Solution B as they relate to solving the problem.

6

Test 2 NetID: 101 Spring 2018

PROBLEM 3 : (Miriam Webster (13 points))

In this problem, you will be asked to write code that uses the dictionary variable calories below. The keys

for this dictionary are strings, which are the names of a food. Each key’s corresponding value is the number

of calories for that food. For example, a bagel has 320 calories and strawberries have 50 calories. You can

write one or many lines of code for each question below.

calories = {’bagel’: 320, ’brie’: 85, ’frappuccino’: 280, ’graham cracker’: 140,

’large egg’: 70, ’small egg’: 60, ’apple’: 81,

’avocado’: 250, ’strawberries’: 50}

For example, the list comprehension

[cc for cc in calories.values() if cc < 100]

evaluates to the list [85, 70, 60, 81, 50].

Part A (4 points)

Write code to store in list variable lowcal the food names (the keys in dictionary in

calories) that have strictly fewer than 90 calories. In the dictionary above that would be

[’brie’, ’large egg’, ’small egg’, ’apple’, ’strawberries’], but the code you write should work

with any dictionary in the format described.

Part B (3 points)

Write the value of the list variable ab after the list comprehension assigns a value to ab.

ab = [k for k in calories.keys() if len(k.split()) > 1]

7

Test 2 NetID: 101 Spring 2018

The dictionary calories is reproduced below.

calories = {’bagel’: 320, ’brie’: 85, ’frappuccino’: 280, ’graham cracker’: 140,

’large egg’: 70, ’small egg’: 60, ’apple’: 81,

’avocado’: 250, ’strawberries’: 50}

Part C (6 points)

Write code to create a dictionary dd in which keys are integer values representing calories in the range [0-99],

[100-199], [200-299] and so on where the key 0 represents [0-99], 1 represents [100-199], and in general the

integer value k represents [k ⇥ 100, k ⇥ 100 + 99]. For the dictionary above the code you write should store

in dd a dictionary equivalent to the one shown below, but the order of the keys doesn’t matter and may be

di↵erent from what’s shown. Your code should work for any values in calories.

{3: [’bagel’],

0: [’brie’, ’large egg’, ’small egg’, ’apple’, ’strawberries’],

2: [’frappuccino’, ’avocado’],

1: [’graham cracker’]}

dd = {}

8

Test 2 NetID: 101 Spring 2018

PROBLEM 4 : (Order in the Court (20 points))

Consider the list of world capitals and their latitudes stored as strings as follows.

data = ["Paris:48.5", "Berlin:52.3", "Canberra:-35.15", "Reykjavik:64.1", "Nairobi:-1.17"]

For example, Paris is at latitude 48.5 North and Canberra is at Latitude 35.15 South. Southern latitudes

are stored as negative numbers as part of each string in list data.

Part A (4 points)

Write function list2tuple that returns a list of tuples in the format (string,float) where the string is the

name of a capital and the float is the capital’s latitude. The value returned by the call list2tuple(data)

should be:

[("Paris", 48.5), ("Berlin", 52.3), ("Canberra", -35.15),

("Reykjavik", 64.1), ("Nairobi", -1.17)]

Complete the function below. As shown above, the order of the tuples in the returned list is the same as the

order of the corresponding strings in parameter data.

def list2tuple(data):

"""

data is a list of strings in format "capital:latitude"

returns list of tuples (string,float) as described

"""

9

Test 2 NetID: 101 Spring 2018

Part B (4 points)

Write function north2south whose parameter is a list of tuples in the format returned by list2tuple. The

function should return a list in which the same tuples are sorted from north to south, that is in order from

the northern most (or largest) latitude to the southern most (or least) latitude.

The list returned by north2south(list2tuple(data)) should be

[("Reykjavik", 64.1), ("Berlin", 52.3), ("Paris", 48.5),

("Nairobi", -1.17), ("Canberra", -35.15)]

Complete the function below.

def north2south(data):

"""

data is a list of tuples in format (string,float)

returns a sorted list of the same tuples ordered from

northern most/greatest float to southern most/least float

"""

10

Test 2 NetID: 101 Spring 2018

Part C (12 points)

Write the function closest whose parameter is a list of tuples such as that returned by list2tuple. It

returns a list of the names of the cities in the parameter tups that are closest in latitude. For the list

data shown at the beginning of this problem the call closest(list2tuples(data)) should return either

[Berlin,Paris] or [Paris,Berlin] (order of capital cities doesn’t matter).

def closest(tups):

"""

tups is a list of tuples in the format (capital,latitude)

returns a 2-element list of the capitals that are closest

"""

11

Test 2 NetID: 101 Spring 2018

PROBLEM 5 : (Blank Pages)

12

