
Comparing genomes to computer operating systems
in terms of the topology and evolution of
their regulatory control networks
Koon-Kiu Yana, Gang Fanga, Nitin Bhardwaja, Roger P. Alexandera, and Mark Gersteinb,a,c,1

bProgram in Computational Biology and Bioinformatics, aDepartment of Molecular Biophysics and Biochemistry, and cDepartment of Computer Science,
Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520

Edited* by Gregory A. Petsko, Brandeis University, Waltham, MA, and approved April 2, 2010 (received for review December 20, 2009)

The genome has often been called the operating system (OS)
for a living organism. A computer OS is described by a regulatory
control network termed the call graph, which is analogous to the
transcriptional regulatory network in a cell. To apply our firsthand
knowledge of the architecture of software systems to understand
cellular design principles, we present a comparison between the
transcriptional regulatory network of a well-studied bacterium
(Escherichia coli) and the call graph of a canonical OS (Linux) in
terms of topology and evolution. We show that both networks
have a fundamentally hierarchical layout, but there is a key differ-
ence: The transcriptional regulatorynetworkpossesses a fewglobal
regulators at the top and many targets at the bottom; conversely,
the call graph hasmany regulators controlling a small set of generic
functions. This top-heavy organization leads to highly overlapping
functional modules in the call graph, in contrast to the relatively in-
dependent modules in the regulatory network.We further develop
a way to measure evolutionary rates comparably between the two
networks and explain this difference in terms of network evolution.
The process of biological evolution via random mutation and
subsequent selection tightly constrains the evolution of regulatory
network hubs. The call graph, however, exhibits rapid evolution
of its highly connected generic components, made possible by de-
signers’ continual fine-tuning. These findings stem from the design
principles of the two systems: robustness for biological systems and
cost effectiveness (reuse) for software systems.

systems biology ∣ adaptive complex systems

Complex systems are characterized by interactions among huge
numbers of heterogeneous constituents. In particular, many

complex systems are adaptive, meaning the interconnections are
shaped progressively by a changing environment. The driving
forces of adaptation are common design principles such as the
reduction of cost and the enhancement of system robustness
(1). Optimal solutions are determined by trade-offs between
conflicting principles and therefore vary from system to system.
Over the past decade, the study of networks has emerged as an
interdisciplinary research field aiming to discover the underlying
principles of complex systems and to develop tools or algorithms
for analyzing them. By capturing the interconnections between
individual components, networks not only serve as backbones
to study the emergent properties of complex systems, but they
also provide an abstract framework that facilitates the cross-
disciplinary comparison of different adaptive complex systems,
ranging from biological systems to technological ones (2).
Cross-disciplinary comparison between biological systems and
commonplace systems such as organization hierarchies (3, 4)
and engineering devices should be of particular interest to systems
biologists. Despite tremendous advancement in high-throughput
experiments and computational algorithms, the study of biological
systems in general still suffers from limitations in accuracy and
completeness of data. Insights gained from systems in which
we have direct access and thorough understanding can leverage
our knowledge to biological ones.

Like biological systems, software systems such as a computer
operating system (OS) are adaptive systems undergoing evolu-
tion. Whereas the evolution of biological systems is subject to
natural selection, the evolution of software systems is under
the constraints of hardware architecture and customer require-
ments. Since the pioneering work of Lehman (5), the evolution-
ary pressure on software has been studied among engineers.
Interestingly enough, biological and software systems both exe-
cute information processing tasks. Whereas biological informa-
tion processing is mediated by complex interactions between
genes, proteins, and various small molecules, software systems
exhibit a comparable level of complexity in the interconnections
between functions. Understanding the structure and evolution of
their underlying networks sheds light on the design principles of
both natural and man-made information processing systems.

The master control plan of a cell is its transcriptional regula-
tory network. The transcriptional regulatory network coordinates
gene expression in response to environmental and intracellular
signals, resulting in the execution of cellular processes such as cell
divisions and metabolism. Understanding how cellular control
processes are orchestrated by transcription factors (TFs) is a fun-
damental objective of systems biology (6–9), and therefore a great
deal of effort has been focused on understanding the structure
and evolution of transcriptional regulatory networks. Analogous
to the transcriptional regulatory network in a cell, a computer OS
consists of thousands of functions organized into a so-called call
graph, which is a directed network whose nodes are functions
with directed edges leading from a function to each other function
it calls. Whereas the genome-wide transcriptional regulatory net-
work and the call graph are static representations of all possible
regulatory relationships and calls, both transcription regulation
and function activation are dynamic. Different sets of transcrip-
tion factors and target genes forming so-called functional modules
(10) are activated at different times and in response to different
environmental conditions. In the same way, complex OSs are
organized into modules consisting of functions that are executed
for various tasks.

Here we perform a one-to-one comparison between the tran-
scriptional regulatory network of Escherichia coli and the call
graph of the Linux kernel, which are both canonical systems.
E. coli is one of the most well-annotated model organisms.
The study of its transcriptional regulatory network has a long his-
tory (11–15). On the software side, the Linux kernel is the central

Author contributions: K.-K.Y., G.F., N.B., R.P.A., and M.G. designed research; K.-K.Y.
performed research; G.F., N.B., and R.P.A. contributed new reagents/analytic tools;
K.-K.Y. analyzed data; and K.-K.Y. and M.G. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: Mark.Gerstein@yale.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.0914771107/-/DCSupplemental.

9186–9191 ∣ PNAS ∣ May 18, 2010 ∣ vol. 107 ∣ no. 20 www.pnas.org/cgi/doi/10.1073/pnas.0914771107

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914771107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914771107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914771107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914771107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914771107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914771107/-/DCSupplemental


component of one of the most popular and well-documented
OSs. Since its creation by Linus Torvalds in 1991, it has been con-
tinuously revised, and its source lines of code has increased from
around 10,000 in the original version 0.01 to more than 12 million
in version 2.6.33. Therefore, the two systems are ideal candidates
for an in-depth cross-disciplinary comparison.

Results
Comparison of Basic Topology and Hierarchical Structure. In a direc-
ted network, the in-degree and out-degree of a node refer to the
number of regulators calling the node and the number of target
genes or functions called by the node, respectively. The networks
of interest in this study are displayed in Fig. 1 and their key attri-
butes are listed in Table 1. As discussed in earlier studies (3, 13),
transcriptional regulatory networks exhibit a characteristic pyra-
midal hierarchical layout, in which there are a few master TFs
on the top and most TFs are at the middle, regulating a set of
non-TF target genes. We refer to these non-TF targets as work-
horses (16). The existence of a hierarchical organization implies
the existence of a downward information flow in response to var-
ious forms of stimuli. The Linux call graph has a similar intrinsic
direction, where the chain of command starts fromhigh-level start-
ing functions like “main” and flows to many other downstream
functions following the outgoing edges. To further investigate
the structure of the two networks, we divide nodes into three ca-
tegories (Fig. 1): master regulators (nodes with zero in-degree),
workhorses (nodes with zero out-degree), and middle managers
(nodes with nonzero in- and out-degree). Fig. 2A shows the distri-
bution of these categories. In the E. coli transcriptional regulatory
network, the fraction of workhorses is large and the top two layers
each comprise less than 5%of the total number of genes. In the call

graph, on the contrary, over 80% of functions are located in the
upper levels of the hierarchy. In other words, unlike the conven-
tional pyramidal hierarchy exhibited by the E. coli transcriptional
regulatory network, the Linux call graph exhibits a top-heavy
structure.

The discrepancy we find in the hierarchical organization is
related to the discrepancy in-degree distribution. Like other com-
plex networks such as social networks and the World Wide Web,
both transcriptional regulatory networks and call graphs possess
hubs, the highly connected nodes at the tail of the skewed degree
distribution (17). The Linux call graph possesses in-degree hubs
(nodes with many incoming edges) but no out-degree hubs (nodes
with a high number of outgoing edges) (see Fig. 2B). The skewed
in-degree distribution has been reported in software networks
other than the Linux call graph (18). In particular, in-degree hubs
in the Linux call graph are enriched at the bottom of the network
hierarchy. They are workhorses called by a large number of reg-
ulators from the upper levels. In contrast, in the E. coli regulatory
network, there are hubs with high out-degree but not high in-
degree; i.e., no gene is regulated by many different transcription
factors (see Fig. 2B). The out-degree hubs in the E. coli regulatory
network regulate many workhorses at the bottom of the
hierarchy.

Comparison of Functional Modules and Node Reuse.Modularity is an
important concept in both biology and engineering (19). In fact,
the technique of modular programming is widely employed in
modern software design (20). As discussed earlier, dynamical
functional modules expressed under different conditions in
transcriptional regulatory networks resemble the modules of
functions responsible for different computational tasks. Modules
can be labeled naturally by the master regulators controlling
them, because every middle manager and workhorse in the
hierarchy is controlled by at least one master regulator. Modules
defined in this way have been termed regulons (15) or origons
(21). Specifically, we define a functional module in both call
graphs and transcriptional regulatory networks as the subnetwork
that consists of all the downstream nodes executed or controlled
by a specific master regulator (Fig. 3A).

Many nodes can be members of several different functional
modules. To quantify this phenomenon, we define the reuse of
a node on the basis of the fraction of modules in the network
to which it belongs. Nodes with high reuse are called generic.
Unsurprisingly, we find that the in-degree hubs are executed
most often and thus are more reusable than other nodes (Pearson
correlation r ¼ 0.16, P < 10−95 for the Linux call graph, and

Fig. 1. The hierarchical layout of the E. coli transcriptional regulatory network and the Linux call graph. (Left) The transcriptional regulatory network of E. coli.
(Right) The call graph of the Linux Kernel. Nodes are classified into three categories on the basis of their location in the hierarchy: master regulators (nodes with
zero in-degree, Yellow), workhorses (nodes with zero out-degree, Green), and middle managers (nodes with nonzero in- and out-degree, Purple). Persistent
genes and persistent functions (as defined in the main text) are shown in a larger size. The majority of persistent genes are located at the workhorse level, but
persistent functions are underrepresented in the workhorse level. For easy visualization of the Linux call graph, we sampled 10% of the nodes for display.
Under the sampling, the relative portion of nodes in the three levels and the ratio between persistent and nonpersistent nodes are preserved compared to the
original network. The entire E. coli transcriptional regulatory network is displayed.

Table 1. Statistics of the E. coli regulatory network and the Linux
call graph

E. coli transcriptional
regulatory network Linux call graph

Number of nodes 1,378 12,391
Number of persistent

nodes
72* (5%) 5,120 (41%)

Number of edges 2,967 33,553
Number of modules 64 3,665
Number of comparative

references
200 bacterial
genomes

24 versions of
kernels

Years of evolution Billions 20

*In the E. coli genome 72 out of 212 persistent genes could be mapped to the
transcriptional regulatory network.

Yan et al. PNAS ∣ May 18, 2010 ∣ vol. 107 ∣ no. 20 ∣ 9187

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y



r ¼ 0.53, P < 10−100 for the E. coli regulatory network). The most
generic function is the well known function “printk,” which is
responsible for standard display and thus called by over 90%
functional modules. In the E. coli regulatory network, one of
the most generic nodes is the outer membrane porin “ompF” that
controls the diffusion of various metabolites. It is reused by 20%
of the modules. Generally speaking, nodes in the Linux call graph
have on average higher reuse than those in the E. coli transcrip-
tional regulatory network (8.4% and 3.5%, respectively,
P < 10−12 in t test; see Fig. 3B). The difference is topologically
attributed to the pyramidal versus top-heavy organization. The
narrow base in the Linux call graph leads to a higher average
reuse. Indeed, many generic functions are workhorses such as
string manipulation function “strlen.”

As shown in Fig. 3B, one of the most striking differences
concerning the organization of modules in the transcriptional
regulatory network and the call graph is the overlap of modules.
In the Linux call graph, two randomly chosen modules overlap by
more than 80%. On the other hand, the average overlap in the
E. coli transcriptional regulatory network is less than 5%. We
shall discuss later how such differences in the overlap of modules
play a key role in robustness and fragility of the two systems.

Comparison of Network Evolution and Node Persistence. The core
components of a system are usually those that survive the evolu-
tionary process. It is instructive to study those “survivors” in both
the E. coli transcriptional regulatory network and the Linux
call graph. In the Linux kernel, we focus on persistent functions,
defined as those that exist in every version of software develop-
ment. Persistent functions in software systems are analogous to
persistent genes in biological systems, which are genes that are
consistently present in a large number of genomes (22). We iden-
tified persistent functions in the Linux kernel on the basis of their
appearance in all versions of the Linux source code used in this
study and persistent genes in the E. coli genome by examining
their distribution across a group of over 200 phylogenetically di-
verse bacterial genomes (see Materials and Methods for details).
As shown in Fig. 1, most persistent genes in the E. coli regulatory
network are workhorses: 71 out of 72 compared to 1,243 out of

1,378 for all genes (P < 10−3 by permutation test). On the other
hand, in the Linux call graph, persistent functions are present at
all three levels but are significantly enriched only among the mas-
ter regulators and middle managers (4,680 out of 5,120 persistent
functions are master regulators and middle managers, compared

Fig. 2. Comparison of the E. coli transcriptional
regulatory network and Linux call graph in terms of
topology and hierarchical structure. (A) The distribu-
tion of the three categories in the E. coli transcrip-
tional regulatory network and the Linux call graph.
The transcriptional regulatory network (1,378 nodes)
follows a conventional hierarchical picture, with a few
top regulators and many workhorse proteins. The
Linux call graph (12,391 nodes), on the other hand,
possesses many regulators; the number of workhorse
routines is much lower in proportion. (B) Degree
distributions of the E. coli transcriptional regulatory
network and the Linux call graph. The regulatory
networkhas abroadout-degreedistributionbut anar-
row in-degree distribution. The situation is reversed in
the call graph, where we can find in-degree hubs, but
the out-degree distribution is rather narrow. An out-
degree hub in the E. coli regulatory network and an
in-degree hub in the Linux call graph are shown.

Fig. 3. Modules in the E. coli transcriptional regulatory network and Linux
call graph. (A) Definition of modules, reuse, and overlap. A module is
characterized by amaster regulator, with zero in-degree, and all of the nodes
regulated directly or indirectly by the master regulator. Here there are three
modules (M1, M2, and M3) represented by three triangles. Reuse of a node is
defined as the fraction of modules to which the node belongs. This quantity is
illustrated with the two labeled nodes. One is shared by M1 and M2 but not
M3, and thus the reuse is 2∕3. The other belongs to only M3; its reuse is there-
fore 1∕3. The overlap between a pair ofmodules is defined by the size of their
intersection normalized by their union. The overlap of M2 and M3 is thus
2∕11. (B) Statistics of modules in the E. coli transcriptional regulatory network
and the Linux call graph. The average overlap is given by the mean overlap
between pairs of randomly chosen modules. Nodes in the call graph are in
general more generic; i.e., they are reused by more modules.

9188 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0914771107 Yan et al.



to 10,872 out of 12,391 for all functions, P < 10−100 by permuta-
tion test).

Of particular interest is the relationship between reuse
and persistence among the workhorses. Specifically, we observe
opposite correlation behaviors in the two systems: Reuse and
persistence are negatively correlated in the E. coli regulatory net-
work but positively correlated in the Linux call graph [Spearman
correlation r ¼ −0.074 (P < 0.01) and r ¼ 0.10 (P < 10−4),
respectively]. In other words, specialized nodes are more likely
to be preserved in the regulatory network, but generic or reusable
functions are persistent in the Linux call graph.

The idea of persistence is closely related to the rate of
evolution. In biological systems, the fundamental components
of life exist in every genome independently of environmental
conditions. These persistent genes, say, ribosomal proteins and
dnaA, are under high selective pressure and evolve very slowly.
For example, the ratio of nonsynonymous to synonymous substi-
tutions (dN∕dS) is smaller among the persistent genes (or, rather,
their corresponding proteins) than in the overall E. coli proteome
(Wilcoxon rank-sum test P < 10−44), suggesting that the selection
pressure on persistent genes is indeed stronger. As shown in

Fig. 4A (Left), the distribution of dN∕dS among persistent
genes in E. coli has a gradual decreasing trend. Most of the
212 persistent genes are under strong constraints; only 51 of them
are under positive selection (dN∕dS > 1). Among the 51, only 8
are outliers that exhibit relatively fast evolution (right portion of
the panel). The situation is remarkably different for persistent
functions in the Linux kernel. Fig. 4A (Right) shows the number
of times persistent functions were revised in the source code. The
bimodal nature of the plot suggests that persistent functions fall
into two classes. Though the majority of functions (3,320 out of
5,120, 65%) such as the string manipulation function “strlen” are
not revised very often, a significant fraction of functions (1,800
out of 5,120, 35%) in the Linux call graph are undergoing
adaptive evolution; i.e., they are evolving rapidly in response
to external conditions. In fact, 335 (19%) of them were updated
in every version, including a set of functions related to memory
management such as “mempool_alloc.” The evolutionary fea-
tures of persistent functions are connected to their topological
features. As shown in Fig. 4B, the rate of revision of the functions
is actually positively correlated with their in-degree (Spearman
correlation r ¼ 0.26, P < 10−75); i.e., highly reused functions

Fig. 4. The rate of evolution of persistent genes and persistent functions. (A) Distribution of the rate of evolution. In the case of the E. coli transcriptional
regulatory network (Left), the rate of evolution is quantified by dN∕dS, the ratio of nonsynonymous to synonymous substitution rate. On the basis of the rate of
evolution, we divide the histogram into two parts representing genes evolving in a more conservative (Left) or a more adaptive (Right) way, respectively. The
overall trend of the distribution is decreasing: 204 out of 212 persistent genes are evolving under purifying selection, and only 8 out of 212 undergo some
degree of adaptive evolution. The fraction of genes under positive selection, by definition dN∕dS > 1, is 51 out of 212. In the case of the Linux call graph (Right),
we quantify the rate of evolution by the number of revisions to the function in the source code. That number is then normalized by the total number of releases
we studied—i.e., 24 (refer toMaterials andMethods). The distribution is bimodal: 3,320 out of 5,120 persistent functions are revised infrequently (left portion),
but there are 1,800 persistent functions that are adaptive (right portion) and 335 of them got updated in every version. (B) Correlation between the in-degree
(Kin þ 1) and the rate of evolution in persistent functions. In the Linux call graph, the rate of revision of persistent functions is positively correlated with their
in-degrees (Spearman correlation r ¼ 0.25). Highly used functions are revisedmore often. (Note that more than one persistent functionmay coincide at a single
dot shown in the scatter plot. Each open circle represents the geometric mean in the corresponding bin.)

Yan et al. PNAS ∣ May 18, 2010 ∣ vol. 107 ∣ no. 20 ∣ 9189

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y



are revised more often. In fact, the adaptive functions distinguish
themselves by having higher values of reuse (12.6% versus 4.4%,
Wilcoxon rank-sum test P < 10−20) than the conservative
functions.

Discussion
We have presented a comparative analysis between the transcrip-
tional regulatory network of E. coli and the call graph of the
Linux operating system and explored their similarities and differ-
ences in hierarchical structure, modularity of organization, and
persistence of nodes. A summary of the comparison can be found
in Table 2. The two networks are shaped by different underlying
design principles, which are deeply connected to the interplay be-
tween the systems and their environments. From a topological
standpoint, it is intriguing that two distinct evolutionary processes
both lead to the emergence of hierarchy in the control and
regulation layouts, probably because hierarchy is a most effective
way to transfer information and coordinate processes. Neverthe-
less, we have observed several intrinsic differences between the
two hierarchical networks. To a certain extent, the presence of
in-degree hub functions and the top-heavy hierarchy found in
the call graph can be readily explained by common programming
practices. In general, for the sake of clarity and easy debugging,
programmers are encouraged to break down a code into pieces
and reuse certain functions; functions that are called by many
others, i.e., in-degree hubs, are therefore favored. The reuse
of code leads to generic functions, which also accounts for the
increase of overlap between modules in the Linux call graph.
These programming practices are rooted in considerations of cost
effectiveness. From an engineering point of view, the reuse of
common nodes between modules is a cost-effective way to
construct a complex system. However, such optimized usage of
functions comes at the expense of robustness, because breakdown
of a generic function causes problems in many modules. More
importantly, generic functions lead to potential fragility in the
sense that modifying any module may require compensating
changes in a generic function. As a result, generic functions have
to be updated more often (as reflected by the class of rapidly
revising functions in Fig. 4A). The low overlap between modules
in biological networks, on the other hand, increases robustness.
Modules tend to work more independently by recruiting different
sets of workhorses from the broad base of the network hierarchy.

The study of persistent genes in biological networks and per-
sistent functions in call graphs offers insight into the evolution of
hierarchies. Persistent genes form the core machinery of life, the
so-called paleome (23). They usually are not regulators but work-

horse genes that perform vital tasks. In fact, most persistent genes
are enzymes. The enrichment of persistent genes at the bottom of
the regulatory hierarchy in E. coli is in accordance with the view
that orthologous proteins are rather similar in function whereas
regulatory changes are the main driving forces of evolution (9).
To a certain extent, biological evolution is building from the
bottom to the top. In contrast, persistent functions in the Linux
call graph are usually not bottom-level workhorses but “control-
lers.” This difference suggests that not only do software networks
possess more regulators than workhorses, the regulators are
maintained on purpose and thus the evolution goes from top
to bottom.

The trade-off between robustness and cost effectiveness biolo-
gical and software systems is deeply related to the nature of
their evolutionary processes. Biological evolution is mediated
by random mutations followed by natural selection; a hub protein
in a biological network is in general hard to evolve because of the
constraints imposed by its many interactions. This constrained
evolution is evinced by the negative correlation between node
centrality and evolutionary rate in biological networks (24, 25).
The randommutation and selection process underlying biological
evolution prohibits the frequent targeted changes required for
nodes to become generic. The system is then forced to pay for
maintaining a large set of specially designed components per-
forming a variety of functions in response to environmental
changes. In contrast, engineering systems are fundamentally dif-
ferent. Both in-degree and betweenness centrality (26) are posi-
tively correlated with the rate of revision in the Linux call graph
(see Fig. 4B for in-degree, Spearman correlation r ¼ 0.26,
P < 10−82 for betweenness). In other words, in software engineer-
ing, a system that needs to continually adapt to new conditions is
cost effective only by paying the price of constantly fine-tuning its
most highly accessed functions.

Reuse is extremely common in designing man-made systems.
For biological systems, to what extent they reuse their repertoires
and by what means sustain robustness at the same time are ques-
tions of much interest. It was recently proposed that the reper-
toire of enzymes could be viewed as the toolbox of an organism
(27). As the genome of an organism grows larger, it can reuse its
tools more often and thus require fewer and fewer new tools for
novel metabolic tasks. In other words, the number of enzymes
grows slower than the number of transcription factors when
the size of the genome increases. Previous studies (4) have made
the related finding that as one moves towards more complex
organisms, the transcriptional regulatory network has an increas-

Table 2. One-to-one comparison between the E. coli regulatory network and the Linux call graph

E. coli transcriptional regulatory network Linux call graph

Basic properties of
systems

Nodes Genes (TFs & targets) Functions (subroutines)
Edges Transcriptional regulation Function calls
External constraints Natural environment Hardware architecture, customer requirements
Origin of evolutionary

changes
Random mutation & natural selection Designers’ fine-tuning

Hierarchical
organization

Structure Pyramidal Top-heavy
Characteristic hubs Upper-level TFs with high out-degree Generic workhorse functions with high in-degree

Organization of
modules

Downstream modules as
labeled by

Master TFs responsible for sensing
environmental signals

High-level starting functions that initiate
execution for specific tasks

Node reuse Low High
Overlap between

modules
Low High

Persistent nodes Characteristics Specialized (nongeneric) workhorses Generic or reusable functions
Location in hierarchy Mostly bottom Mostly top
Evolutionary rate Mostly conservative (e.g., dnaA) Conservative (e.g., strlen) & adaptive (e.g.,

mempool_alloc)

Design principles Building of hierarchy Bottom up Top down
Optimal solution favors Robustness Cost effectiveness (reuse of components)

9190 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0914771107 Yan et al.



ingly top-heavy structure with a relatively narrow base. Thus, it
may be that further analysis will demonstrate the increasing
resemblance of more complex eukaryotic regulatory networks
to the structure of the Linux call graph.

Materials and Methods
Network Information. Data on the E. coli transcriptional regulatory network
were obtained from RegulonDB (15). The largest connected component of
the network consists of 1,378 genes with 2,967 interactions. Linux source
code was downloaded from the Linux Kernel Archives (http://www.kernel.
org). To address the evolution of the kernel, 24 stable versions were used,
from 2.6.4 to 2.6.27, spanning fromMarch, 2004 to October, 2008. In general,
the release of a new version, say, from 2.5 to 2.6, is accompanied by major
changes. We worked on the 24 releases restricted in version 2.6 and focused
on the gradual evolution exhibited in these releases. For some of these
releases, an additional patch was required in order to compile (SI Text).
The source codes were compiled on a MacBook with a 2 GHz Intel Core 2
Duo processor and 2 GB of memory by using the compiler GCC 3.4.6, and call
graphs were extracted from the compiled code by using the tool CodeViz
(release 1.0.11) by Gorman (http://www.csn.ul.ie/~mel/projects/codeviz/)
(see SI Text). The network analysis presented in this study was performed
on the most recent version of the Linux kernel downloaded (v. 2.6.27), in
which there are 12,391 functions related by 33,553 calls. The network can
be downloaded from http://networks.gersteinlab.org/callgraph.

Persistent Genes. The persistence index and the list of 212 persistent genes in
E. coli K12 were obtained from ref. 22. Among them, 72 can be mapped to
the largest component of the transcription regulatory network. We quantify
conservation by the ratio of nonsynonymous to synonymous substitution
rates (dN∕dS) (28). The two rates were estimated by aligning E. coli K12
proteins with their orthologs from Salmonella typhimurium LT2. The list
of orthologs was downloaded from the ATGC database (29). Alignment
was done by using the tool PAL2NAL (30), and dN∕dS values were estimated
by the PAML package (31).

Persistent Functions. A function is defined as persistent if it appears in all the
compiled call graphs (v. 2.6.4 to v. 2.6.27). The list of persistent functions can
be found at http://networks.gersteinlab.org/callgraph. In this definition, we
do not take into account the precise changes in the code of the function. The
frequency of revision for a particular function was estimated by parsing the
patch files (see SI Text). A function is regarded as revised if there is any change
in its code.

ACKNOWLEDGMENTS. We thank the anonymous reviewers whose valuable
suggestions helped to improve the quality of the manuscript. K.-K.Y.
acknowledges Lucas Lochovsky for useful discussion and critical reading of
an early manuscript. K.-K.Y. acknowledges Kevin Yip for useful discussion.
This work is supported by the National Institutes of Health.

1. Alon U (2007) An Introduction to Systems Biology (Chapman & Hall/CRC, London).
2. Barabási A (2002) LINKED: The New Science of Networks (Perseus, Cambridge, MA).
3. Yu H, Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory

networks. Proc Natl Acad Sci USA 103:14724–14731.
4. Bhardwaj N, Yan KK, Gerstein M (2010) Analysis of diverse regulatory networks in a

hierarchical context shows consistent tendencies for collaboration in themiddle levels.
Proc Natl Acad Sci USA 107:6841–6846.

5. Lehman MM (1980) Programs, life cycles, and laws of software evolution. Proc IEEE
68:1060–1076.

6. Lee TI, et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae.
Science 298:799–804.

7. Bolouri H, Davidson EH (2002) Modeling transcriptional regulatory networks.
Bioessays 24:1118–1129.

8. Barabási A, Oltvai ZN (2004) Network biology: Understanding the cell’s functional
organization. Nat Rev Genet 5:101–113.

9. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (2004) Structure and
evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14:283–291.

10. Luscombe NM, et al. (2004) Genomic analysis of regulatory network dynamics reveals
large topological changes. Nature 431:308–312.

11. Thieffry D, Huerta AM, Perez-Rueda E, Collado-Vides J (1998) From specific gene
regulation to genomic networks: A global analysis of transcriptional regulation in
Escherichia coli. Bioessays 20:433–440.

12. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional
regulation network of Escherichia coli. Nat Genet 31:64–68.

13. Ma H, et al. (2004) An extended transcriptional regulatory network of Escherichia
coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res
32:6643–6649.

14. Seshasayee AS, Fraser GM, BabuMM, Luscombe NM (2009) Principles of transcriptional
regulation and evolution of the metabolic system in E. coli. Genome Res 19:79–91.

15. Gama-Castro S, et al. (2008) RegulonDB (version 6.0): Gene regulation model of
Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters
and Textpresso navigation. Nucleic Acids Res 36:D120–124.

16. Maslov S, Sneppen K (2005) Computational architecture of the yeast regulatory
network. Phys Biol 2:S94–100.

17. Barabasi AL, Albert R (1999) Emergence scaling in random networks. Science
286:509–512.

18. Myers CR (2003) Software systems as complex networks: Structure, function, and
evolvability of software collaboration graphs. Phys Rev E 68:046116.

19. Alon U (2003) Biological networks: The tinkerer as an engineer. Science
301:1866–1867.

20. Parnas DL (1972) On the criteria to be used in decomposing systems into modules.
Commun ACM 15:1053–1058.

21. Balazsi G, Barabasi A, Oltvai ZN (2005) Topological units of environmental signal
processing in the transcriptional regulatory network of Escherichia coli. Proc Natl Acad
Sci USA 102:7841–7846.

22. Fang G, Rocha EPC, Danchin A (2008) Persistence drives gene clustering in bacterial
genomes. BMC Genomics 9:4.

23. Danchin A (2009) Bacteria as computers making computers. FEMS Microbiol Rev
33:3–26.

24. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, FeldmanMW (2002) Evolutionary rate in
the protein interaction network. Science 296:750–752.

25. Kim PM, Korbel JO, Gerstein MB (2007) Positive selection at the protein network
periphery: Evaluation in terms of structural constraints and cellular context. Proc Natl
Acad Sci USA 104:20274–20279.

26. Yu H, Kim PM, Sprecher E, Trifonov V, GersteinM (2007) The importance of bottlenecks
in protein networks: Correlation with gene essentiality and expression dynamics.
PLoS Comput Biol 3:e59.

27. Maslov S, Krishna S, Pang TY, Sneppen K (2009) Toolbox model of evolution of
prokaryotic metabolic networks and their regulation. Proc Natl Acad Sci USA
106:9743–9748.

28. Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002) Essential genes are more evolutio-
narily conserved than are nonessential genes in bacteria. Genome Res 12:962–968.

29. Novichkov PS, Ratnere I, Wolf YI, Koonin EV, Dubchak I (2009) ATGC: A database of
orthologous genes from closely related prokaryotic genomes and a research platform
for microevolution of prokaryotes. Nucleic Acids Res 37:D448–454.

30. SuyamaM, Torrents D, Bork P (2006) PAL2NAL: Robust conversion of protein sequence
alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609–612.

31. Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol
24:1586–1591.

Yan et al. PNAS ∣ May 18, 2010 ∣ vol. 107 ∣ no. 20 ∣ 9191

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.kernel.org
http://www.kernel.org
http://www.kernel.org
http://www.kernel.org
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914771107/-/DCSupplemental/pnas.0914771107_SI.pdf?targetid=STXT
http://www.csn.ul.ie/~mel/projects/codeviz/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914771107/-/DCSupplemental/pnas.0914771107_SI.pdf?targetid=STXT
http://networks.gersteinlab.org/callgraph
http://networks.gersteinlab.org/callgraph
http://networks.gersteinlab.org/callgraph
http://networks.gersteinlab.org/callgraph
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914771107/-/DCSupplemental/pnas.0914771107_SI.pdf?targetid=STXT

