
focus

0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 3 5

documentation use, usefulness, and mainte-
nance, thus enabling better decision making
and tool design by developers and project
managers. Our studies’ results confirm the
widely held belief that SEs typically do not up-
date documentation as timely or completely as
software process personnel and managers ad-
vocate. However, the results also reveal that
out-of-date software documentation remains
useful in many circumstances.

The studies
The first study consisted of interviews at 12

corporate sites and one government site.1 We in-
terviewed participants in pairs to make the situ-
ation more comfortable and natural for them.
The interview questionnaire (see wwwsel.iit.nrc.
ca/~singer/main.html) had three parts: back-
ground information, task analysis, and tools
wish list. The sidebar lists some of the interview-
ees’ assessments of documentation.

We conducted the second study at a large
telecommunications company.2,3 It involved
software engineers maintaining and enhancing
a large, profitable telecommunications system
written in a proprietary high-level language.
This study had four components. First, using a
Web questionnaire, we asked the SEs what

How Software Engineers
Use Documentation:
The State of the Practice

S
oftware engineering is a human task, and as such we must study
what software engineers do and think. Understanding the norma-
tive practice of software engineering is the first step toward devel-
oping realistic solutions to better facilitate the engineering process.

We conducted three studies using several data-gathering approaches to
elucidate the patterns by which software engineers (SEs) use and update
documentation. Our objective is to more accurately comprehend and model

the state of the practice

Most software documentation is not updated consistently, but out-
of-date documentation might remain useful. We must find powerful
yet simple documentation strategies and formats that software
engineers will likely maintain.

Timothy C. Lethbridge, University of Ottawa

Janice Singer, National Research Council

Andrew Forward, Deloitte Consulting

they do. Second, we followed a single SE for
14 weeks as he worked. Third, we shadowed
nine SEs individually for one hour as they
worked. Finally, we obtained companywide
tool use statistics.

The final study comprised a 50-question

survey that focused on many documentation
aspects.4,5 We solicited survey participants di-
rectly from several high-tech companies and
by using software engineering email lists.

Of the three studies, only the final one fo-
cused exclusively on documentation issues.
The former two focused on gaining an overall
understanding of the software maintenance
process. Even so, they uncovered important
information that relates directly to documen-
tation use and usefulness.

Documentation maintenance and usefulness
First, and probably foremost, our studies

confirm that SEs often do not maintain docu-
mentation. Figure 1 shows survey respondents’
answers to the question, “In your experience,
when changes are made to a software system,
how long does it take for the supporting docu-
mentation to be updated to reflect the
changes?” (Note that only 25 of the 48 survey
respondents answered this question.) With the
exception of testing and quality documentation
(such as test cases and plans), SEs rarely update
the documents. When SEs do update docu-
ments, they usually do so several weeks after
changes are made to the code. Forty-four per-
cent of the 45 respondents somewhat agreed
and 24 percent strongly agreed with the state-
ment, “Documentation is always outdated rela-
tive to the current state of a software system.”

The interview responses mirrored the survey

3 6 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

During our interviews, software engineers expressed the following general
attitudes about documentation.

The good
� Architecture and other abstract documentation information is often valid

or at least provides historical guidance that can be useful for maintainers.
� Inline comments are often good enough to greatly assist detailed main-

tenance work.

The bad
� Documentation of all types is frequently out of date.
� Systems often have too much documentation.
� Documentation is often poorly written.
� Finding useful content in documentation can be so challenging that peo-

ple might not try to do so.
� Much mandated documentation is so time consuming to create that its

cost can outweigh its benefits.

The ugly
� A considerable fraction of documentation is untrustworthy.

Documentation:
The Good, the Bad, and the Ugly

Pe
rc

en
ta

ge
 o

f s
ur

ve
y

re
sp

on
de

nt
s

 0

10

20

30

40

50

60

Document type

Requirements Specifications Detailed design Low-level design Architectural Testing or quality

Never
Rarely

Response

Few months
Few weeks
Few days

Figure 1. The time
between system changes
and documentation
updates for different
documentation types.

results. SEs were likely to update documenta-
tion continually only when it was attached to
the process for completing a change request. In
other contexts, SEs sometimes would and
sometimes wouldn’t update documentation.
The documentation’s accuracy seemed to de-
pend largely on its recentness and the amount
of change that had occurred in the relevant
code sections (with greater source code change
corresponding to greater discrepancy between
the code and the documentation).

In important contrast to the lack of docu-
mentation maintenance is the usefulness of even
outdated or inaccurate documentation. Fifty-
three percent of the 45 survey respondents
somewhat agreed and 28 percent strongly
agreed that “Software documentation can be
useful, even though it might not always be the
most up-to-date.” The survey provided data on
the SEs’ perceptions of different document
types’ accuracy and the frequency with which
they consulted the documentation. Table 1
shows the correlation between the document
type’s perceived accuracy and the frequency
with which SEs consulted the documentation.

The relationship between accuracy and
consultation frequency is the highest for test-
ing and quality documents and the second
highest for low-level design documents. To a
lesser degree, the accuracy of requirements, ar-
chitectural design documents, and detailed de-
sign documents also correlate with consulta-
tion frequency. Specifications have almost no
such correlation. The relationships seem to in-
dicate that the closer you get to the real code,
the more accurate the documentation must be
for SEs to use it.

The interviews support the survey findings.
SEs were more likely to use and trust docu-
mentation that describes a particular feature’s
design or the system architecture. The more
abstract a piece of documentation, the more
likely SEs were to consider it accurate and use-
ful. One software engineer stated, “The docu-
mentation is good [for giving] you a high-level
understanding of how the feature is really in-
tended to work.”

Documentation applicability
Table 2 shows the tasks for which the sur-

vey respondents rated the available software
documentation effective or extremely effective.

More than one-half of the respondents
found the available software documentation

effective when learning a new software sys-
tem, testing a system, or working with a new
system. Fifty percent found it effective when
other developers are unavailable or when
looking for big-picture information. Only ap-
proximately one-third of the respondents
found the documentation effective for main-
taining a system, answering questions about
the system, looking for in-depth information,
or working with an established system. The
results indicate that documentation satisfies
particular roles for particular tasks.

Words versus actions
We must recognize that our survey results re-

flect how SEs perceive documentation, not nec-
essarily how they actually use it. For example,
at the telecommunications company, 6 percent
of the respondents said they spent considerable
time reading documentation, and 50 percent re-
ported spending considerable time consulting

N o v e m b e r / D e c e m b e r 2 0 0 3 I E E E S O F T W A R E 3 7

Table 1
The correlation between a document type’s

perceived accuracy and its consultation frequency
Document type Correlation

Testing or quality 0.67 (p < .005)
Low-level design 0.58 (p < .005)
Requirements 0.43 (p < .05)
Architectural 0.41 (p < .05)
Detailed design 0.39 (p < .05)
Specifications 0.03

Table 2
Percentage of survey respondents who rated

documentation effective or extremely effective
for particular tasks

Task Percent

Learning a software system 61
Testing a software system 58
Working with a new software system 54
Solving problems when other developers are unavailable to answer questions 50
Looking for big-picture information about a software system 46
Maintaining a software system 35
Answering questions about a system for management or customers 33
Looking for in-depth information about a software system 32
Working with an established software system 32

source code. In our observational studies at the
same company, however, SEs consulted the doc-
umentation only 3 percent of the time: 12 times
over 357 logged events. This suggests that doc-
umentation use might be even less than re-
ported. The higher perceived use might
nonetheless suggest that SEs place considerable
value on the documentation.

Discussion
Our studies raise two main issues.

Timeliness
The first is, should we force software engi-

neers to keep documentation meticulously up-
to-date? Formal-process theorists would cer-
tainly argue that we should. In fact, most
published methodologies prescribe the docu-
mentation types that SEs should write and use.

But where’s the real evidence that the pre-
scribed processes work? Most of it is based on
opinion or conjecture. Many software proj-
ects fail or run over budget, but evidence
hints that the fault lies mostly with poor man-
agement and failure to gather requirements,
not with out-of-date or incomplete documen-
tation. As we mentioned before, our studies
suggest that out-of-date documentation has
value, particularly if the high-level abstrac-
tions remain valid.

Judging value: The simple-and-powerful rule
The second issue is why SEs adopt particular

practices and tools. Our results indicate that
software engineers create and use simple yet
powerful documentation, and tend to ignore
complex and time-consuming documentation.

Consider bug-tracking systems. The inter-
views revealed that SEs perceive them as im-
portant repositories for historical information.
Documentation in bug-tracking systems stays
up-to-date because SEs recognize its value—
adding a simple comment as you fix a bug re-
quires little effort, and maintenance is semi-
automatic. Similarly, code-level comments stay
current because they are short and “right
there,” resulting in relatively little mainte-
nance work. Test cases also stay up-to-date be-
cause each one has a simple structure and ob-
vious operational value for verifying the
system. Specifications and requirements, how-
ever, are big, complex, and of varied structure.
So, SEs consider updating these documents
less worthwhile, especially because the high-

level abstractions tend to remain useful when
the details become outdated.

The necessity of designing simple, powerful
design tools is evident in other software engi-
neering areas. For example, ultrasimple yet
powerful tools such as grep are still among the
most widely used. They’re far more popular
and enduring than many CASE (computer-
aided software engineering) tools that are
more powerful but much more complex. SEs
also widely use processes such as code inspec-
tions, which have obvious power and which
they can describe in a page or two.

All this suggests that to achieve greater doc-
umentation relevance, we need to find ways to
increase its power, simplicity, or preferably
both. We must find ways to express the most
useful information in less space and to make
documentation easier to update, perhaps
semiautomatically.

Some people will argue that SEs fail to up-
date documentation because they’re lazy.
Many managers have responded to this asser-
tion by trying to impose more discipline on
software engineers—forcing them to update
documents. We suggest that most SEs aren’t
lazy; they have discipline of a different
sort. They consciously or subconsciously
make value judgments and conclude that it’s
worthwhile to update only certain types of
documentation.

So, rather than forcing SEs to perform cost-
ineffective work, we should strive for simple
yet powerful documentation formats and
tools, as we just mentioned. Also, we need to
better understand the various roles of software
documentation and more closely match our
prescribed processes to fit those roles.

A n additional lesson from our research
is that you can learn a lot from study-
ing SEs in the real world—both what

they do and how they think. Further studies
like ours could provide rich data that can
serve to help formulate research questions.
Those research questions, in turn, could aid in
other types of empirical studies, such as test-
ing specific hypotheses in more constrained
(artificial) settings.

3 8 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

To achieve
greater

documentation
relevance,
we need to
find ways

to increase
its power,

simplicity, or
preferably

both.

References
1. J. Singer, “Practices of Software Maintenance,” Proc.

Int’l Conf. Software Maintenance (ICSM 98), IEEE CS
Press, 1998, pp. 139–145.

2. J. Singer et al., “An Examination of Software Engineer-
ing Work Practices,” Proc. Centers for Advanced Stud-
ies Conf. (CASCON 97), IBM, pp. 209–223.

3. J. Singer and T.C. Lethbridge, “Studying Work Practices
to Assist Tool Design,” Proc. Int’l Workshop Program
Comprehension (IWPC 98), IEEE CS Press, pp. 173–
179.

4. A. Forward, Software Documentation: Building and
Maintaining Artefacts of Communication, master’s the-
sis, School of Information Technology and Eng., Univ.
Ottawa, 2002; www.site.uottawa.ca/~tcl/gradtheses/
aforward.

5. A. Forward and T.C. Lethbridge, “The Relevance
of Software Documentation, Tools and Technologies:
A Survey,” Proc. ACM Symp. Documentation Eng.
(DocEng 2002), ACM Press, pp. 26–33.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

About the Authors

Timothy C. Lethbridge is an associate professor at the University of Ottawa. He in-
vestigates ways that people can more easily understand and manipulate complex information,
including software. He’s on the steering committee of Computing Curriculum—Software Engi-
neering, sponsored by the IEEE Computer Society and the ACM. He also coauthored Object Ori-
ented Software Engineering: Practical Software Development Using UML and Java (McGraw
Hill, 2001). He received his PhD in Computer Science from the University of Ottawa. He’s a
senior member of the IEEE. Contact him at SITE, 800 King Edward Ave., Ottawa, ON K1N 6N5,
Canada; tcl@site.uottawa.ca.

Janice Singer is a cognitive psychologist working in the National Research Council of
Canada’s Software Engineering Group. She also heads the NRC’s Human-Computer Interaction
program. Her interests lie in collaboration, cognition, and improving software processes and
tools by understanding the cognitive and social demands of work. She received her PhD in
cognitive psychology from the University of Pittsburgh. Contact her at the NRC Inst. for Infor-
mation Technology, M50, 1200 Montreal Rd., Ottawa, ON K1A 0R6, Canada; janice.singer@
nrc-cnrc.gc.ca.

Andrew Forward is a systems analyst with Deloitte Consulting, working in their tech-
nology practice. His academic interests are software engineering, automated testing, and docu-
mentation. He has an MS in computer science from the University of Ottawa. He’s a member of
the IEEE and ACM. Contact him at 106 Melrose Ave., Apt 1, Ottawa, ON K1Y 1V1, Canada;
aforward@dc.com.

EXECUTIVE STAFF
Executive Director: DAVID W.HENNAGE
Assoc. Executive Director:
ANNE MARIE KELLY
Publisher: ANGELA BURGESS
Assistant Publisher: DICK PRICE
Director, Administration: VIOLET S. DOAN
Director, Information Technology & Services:
ROBERT CARE
Manager, Research & Planning: JOHN C.KEATON

COMPUTER SOCIETY OFFICES
Headquarters Office
1730 Massachusetts Ave. NW

Washington, DC 20036-1992

Phone: +1 202 371 0101 • Fax: +1 202 728 9614

E-mail: hq.ofc@computer.org

Publications Office
10662 Los Vaqueros Cir., PO Box 3014

Los Alamitos, CA 90720-1314

Phone:+1 714 8218380

E-mail: help@computer.org

Membership and Publication Orders:

Phone: +1 800 272 6657 Fax: +1 714 821 4641

E-mail: help@computer.org

Asia/Pacific Office
Watanabe Building

1-4-2 Minami-Aoyama,Minato-ku,

Tokyo107-0062, Japan

Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553

E-mail: tokyo.ofc@computer.org

PURPOSE The IEEE Computer Society is the
world’s largest association of computing profes-
sionals, and is the leading provider of technical
information in the field.

MEMBERSHIP Members receive the
monthly magazine COMPUTER, discounts, and
opportunities to serve (all activities are led by
volunteer members). Membership is open to all
IEEE members, affiliate society members, and
others interested in the computer field.

BOARD OF GOVERNORS
Term Expiring 2003: Fiorenza C. Albert-
Howard, Manfred Broy, Alan Clements, Richard A.
Kemmerer, Susan A. Mengel, James W. Moore,
Christina M. Schober
Term Expiring 2004: Jean M. Bacon, Ricardo
Baeza-Yates, Deborah M. Cooper, George V. Cybenko,
Haruhisha Ichikawa, Lowell G. Johnson, Thomas W.
Williams
Term Expiring 2005: Oscar N. Garcia, Mark A
Grant, Michel Israel, Stephen B. Seidman, Kathleen
M. Swigger, Makoto Takizawa, Michael R. Williams

Next Board Meeting: 22 Nov. 2003, Tampa, FL

IEEE OFFICERS
President: MICHAEL S. ADLER
President-Elect: ARTHUR W. WINSTON
Past President: RAYMOND D. FINDLAY
Executive Director: DANIEL J. SENESE
Secretary: LEVENT ONURAL
Treasurer: PEDRO A. RAY
VP, Educational Activities: JAMES M. TIEN
VP, Publications Activities:MICHAEL R. LIGHTNER
VP, Regional Activities: W. CLEON ANDERSON
VP, Standards Association: GERALD H. PETERSON
VP, Technical Activities: RALPH W. WYNDRUM JR.
IEEE Division VIII Director JAMES D. ISAAK
President, IEEE-USA: JAMES V. LEONARD

EXECUTIVE COMMITTEE
President:
STEPHEN L. DIAMOND*
Picosoft, Inc.
P.O.Box 5032
San Mateo, CA 94402
Phone: +1 650 570 6060
Fax: +1 650 345 1254
s.diamond@computer.org

President-Elect: CARL K. CHANG*
Past President: WILLIS. K. KING*
VP, Educational Activities: DEBORAH K. SCHERRER
(1ST VP)*
VP, Conferences and Tutorials: CHRISTINA
SCHOBER*
VP, Chapters Activities: MURALI VARANASI†
VP, Publications: RANGACHAR KASTURI †
VP, Standards Activities: JAMES W. MOORE†
VP, Technical Activities: YERVANT ZORIAN†
Secretary: OSCAR N. GARCIA*
Treasurer:WOLFGANG K. GILOI* (2ND VP)
2002–2003 IEEE Division VIII Director: JAMES D.
ISAAK†
2003–2004 IEEE Division V Director: GUYLAINE M.
POLLOCK†
2003 IEEE Division V Director-Elect: GENE H. HOFF-
NAGLE
Computer Editor in Chief: DORIS L. CARVER†
Executive Director: DAVID W. HENNAGE†

* voting member of the Board of Governors
† nonvoting member of the Board of Governors

COMPUTER SOCIETY WEB SITE
The IEEE Computer Society’s Web site, at
http://computer.org, offers information and
samples from the society’s publications and con-
ferences, as well as a broad range of information
about technical committees, standards, student
activities, and more.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

