Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical question can be answered using knowledge of the material combined with some thought and analysis.

- 1. **Deciding isomorphism** (three credits). What is the computational complexity of recognizing isomorphic abstract simplicial complexes?
- 2. Order complex (two credits). A flag in a simplicial complex K in \mathbb{R}^d is a nested sequence of proper faces, $\sigma_0 < \sigma_1 < \ldots < \sigma_k$. The collection of flags form an abstract simplicial complex A sometimes referred to as the order complex of K. Prove that A has a geometric realization in \mathbb{R}^d .
- 3. Barycentric subdivision (one credit). Let K consist of a d-simplex σ and its faces.
 - (i) How many d-simplexes belong to the barycentric subdivision, SdK?
 - (ii) What is the *d*-dimensional volume of the individual *d*-simplices in $\mathrm{Sd}K$?
- 4. Covering a tree (one credit). Let P be a finite collection of closed paths that cover a tree, that is, each node and each edge of the tree belongs to at least one path.
 - (i) Prove that the nerve of P is contractible.
 - (ii) Is the nerve still contractible if we allow subtrees in the collection? What about sub-forests?
- 5. Nerve of stars (one credit). Let K be a simplicial complex.
 - (i) Prove that K is a geometric realization of the nerve of the collection of vertex stars in K.
 - (ii) Prove that $\operatorname{Sd} K$ is a geometric realization of the nerve of the collection of stars in K.
- 6. Helly for boxes (two credits). The *box* defined by two points $a = (a_1, a_2, \ldots, a_d)$ and $b = (b_1, b_2, \ldots, b_d)$ in \mathbb{R}^d consists of all points x whose coordinates satisfy $a_i \leq x_i \leq b_i$ for all i. Let F be a finite collection of boxes in \mathbb{R}^d . Prove that if every pair of boxes has a non-empty intersection then the entire collection has a non-empty intersection.
- 7. Alpha complexes (two credits). Let $S \subseteq \mathbb{R}^d$ be a finite set of points in general position. Recall that $\check{C}ech(r)$ and Alpha(r) are the $\check{C}ech$

Exercises

and alpha complexes for radius $r \geq 0$. Is it true that $Alpha(r) = \check{C}ech(r) \cap Delaunay$? If yes, prove the following two subcomplex relations. If no, give examples to show which subcomplex relations are not valid.

- (i) $\operatorname{Alpha}(r) \subseteq \operatorname{\check{C}ech}(r) \cap \operatorname{Delaunay}.$
- (ii) $\check{C}ech(r) \cap Delaunay \subseteq Alpha(r)$.
- 8. **Collapsibility** (three credits). Call a simplicial complex *collapsible* if there is a sequence of collapses that reduce the complex to a single vertex. The existence of such a sequence implies that the underlying space of the complex is contractible. Describe a finite 2-dimensional simplicial complex that is not collapsible although its underlying space is contractible.