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Outline

• Review Big Data Streaming Model
• Bloom Filters

• Application: The Heavy Hitters Problem
• (Detecting Viral Google Searches)

• Streaming Data Structure: Count Min-Sketch



Big Data

• Problem. Too much data to fit in memory (e.g., who can store the 
internet graph?



Big Data

• Problem. Alternatively, maybe we could store our data, but it would
take too long to process it, and we want a real time (or near real time) 
application.



Streaming Model

• Solution. In the streaming model of computation, we process the 
data one piece at a time, with limited memory.

• Equivalently: we develop algorithms that run in a single left to right 
pass over an array, with a small amount of auxiliary storage.

Football Duke Politics News ... Weather
0 1 2 3 … T

Auxiliary Storage of size n
(n << T)



Bloom Filter

• We have already seen how to construct a bloom filter, a form of lossy 
compression (as opposed to lossless compression, e.g., Huffman).

• Answers membership queries; i.e., “Have I seen element x before in 
the stream?”

• Applications include:
• Web browser checking for known malicious urls
• Checking for “one hit wonders” in web caching (remember consistent 

hashing?) 



Bloom Filter

• Our auxiliary storage is just a hash table of size n. Initialize all values 
to 0.

• We also use r independent hash functions h1, …, hr.

• Whenever we see an element x in the stream, set h1(x) = … = hr(x) = 1.

• To check whether we have seen an element y:
• If h1(y) = … = hr(y) = 1, return True.
• Else, return False.



Bloom Filter

Football Duke Politics News … Weather

1 0 1 0 … 1

h1(Football) h2(Football) hr(Football)



Bloom Filter

• Guarantees:
• If we have seen x, we always correctly output True.
• If we have not seen x, we correctly output False with high probability.

• What if we want to remember more than just whether we have seen 
x? 

• How about “How many times have we seen x?”
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Heavy Hitters Problem

• In particular, suppose we want to construct an algorithm for detecting 
viral google searches. 

• There are a few billion google searches every day, and we’ll say that a 
search is viral if it constitutes a constant fraction of those searches 
(e.g., 1%).

• Can we detect these viral google searches with a single pass over the 
stream of searches? 



Heavy Hitters Problem

• We can formalize this as the heavy hitters problem.

• We are given a stream of length T and a parameter k.
• Think of T >> k.

• In a single pass over the stream, we want to find any elements that 
appear at least T/k times.



Heavy Hitters Problem

• Bloom filters gets us part of the way there. 

• In particular, if we had k=T, the heavy hitters problem is the
membership problem. 

• Thus, the heavy hitters problem is at least as hard (computationally, 
more on reductions later in the course) as the membership problem.

• Since we only had a correct algorithm with high probability for 
membership, we shouldn’t expect an exact answer here.



Heavy Hitters Problem

• Thus, we consider the !-approximate heavy hitters problem. Still 
given a stream of length T and a parameter k (T >> k), but we are also 
given an “error tolerance” parameter !.

• In a single pass over the stream using just O(1/!) auxiliary storage, we 
want to output a list L of elements such that:
• If x occurs at least T/k times in the stream, then x is in L.
• If x is in L, then with high probability, x occurs at least T/k - !T times in the 

stream. 
• (e.g., if ! = 1/(2k), then we get O(k) storage and should satisfy: if x is in L, with 

high probability, x occurs at least T/2k times in the stream).
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Count Min-Sketch

• Big Idea. Just build a bloom filter that can count.

• Our auxiliary storage consists of r hash tables, each of size n and 
initialized to 0’s, with corresponding r independent hash functions h1, 
…, hr.

• Whenever we see an element x in the stream:
• For all i=1 to i=r: {hi(x) = hi(x) + 1}
• if min$ ℎ$ & ≥ (/*, add x to L.



Count Min-Sketch
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Count Min-Sketch
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Count Min-Sketch
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Count Min-Sketch

• Note that we occasionally overestimate frequencies, but we never
underestimate frequencies. 

• So it is easy to satisfy the first part of the heavy hitter’s problem: “If x 
occurs at least T/k times in the stream, then x is in L.”

• Problem. We need to argue that it is unlikely we overestimate so 
badly that we violate the other part: “If x is in L, then with high 
probability, x occurs at least T/k - !T times in the stream.” 



Count Min-Sketch

• Let !" be the frequency (# of times appearing in stream) of element x.

• Let#!" 1 ,… , #!" ' be our estimated frequencies, that is,#!" ( = ℎ+(-)
at the end of our pass through the stream.

• Let /",0 ( be an indicator random variable equal to 1 if ℎ+ - =
ℎ+(1), and 0 otherwise.

• What is 2 #!" ( ? 



Count Min-Sketch

• We make the assumption of universal hashing: For all ! ≠
#, Pr ℎ ! = ℎ # ≤ *
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Count Min-Sketch

• Recall we want to use O(1/!) storage: set n (size of each hash table) to 
3/!. Let ! = 1/(2k). Then

" #$% & ≤ $% + !
)
3 = $% +

)
6- .

• To bound the probability that we get a large overestimate, we can use 
Markov’s inequality: For any constant c > 1 and random variable X, 
Pr 1 > 3 " 1 ≤ 4

5 . For c = 3/2,  
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Count Min-Sketch

• Recall however, that we output the minimum estimate. Exploiting the 
fact that the r hash functions are chosen independently:
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Count Min-Sketch

• Recall that the problem for ! = 1/2k is: we get O(k) storage and should 
satisfy: if x is in L, with high probability, x occurs at least T/(2k) times 
in the stream).

• Consider some x with "# < %
&'. We have shown that

Pr min- ."# / >
32
44 +

2
44 =

2
4 ≤ 2

3
9
.

• So if x is in L, then it occurs at least T/(2k) times in the stream with 
probability at least 1-(2/3)r.
• So if we want an error with probability at most 2% (say), we just need 

to use ; = log?/& 50 = 10 independent hash functions.



Count Min-Sketch

• In summary, we can use 20/! = O(1/!) space to:
• find all elements that appear at least T/k times in the stream, and 
• output elements that appear less than T/2k times in stream with probability 

at most 2%.
• And in practice, even fewer hash functions often suffice for good 

performance.

• Note that we can do all of this with just a single linear scan over the 
stream (and only constant time operations per element), and just 
O(1/!) storage.
• The amount of auxiliary storage we use is completely independent of T!    



Count Min-Sketch

• Food for Thought. What if you didn’t know T beforehand? 
• Maybe this is just a real time application, and you want to maintain a list of 

any elements that are heavy hitters among what you have seen so far. 


