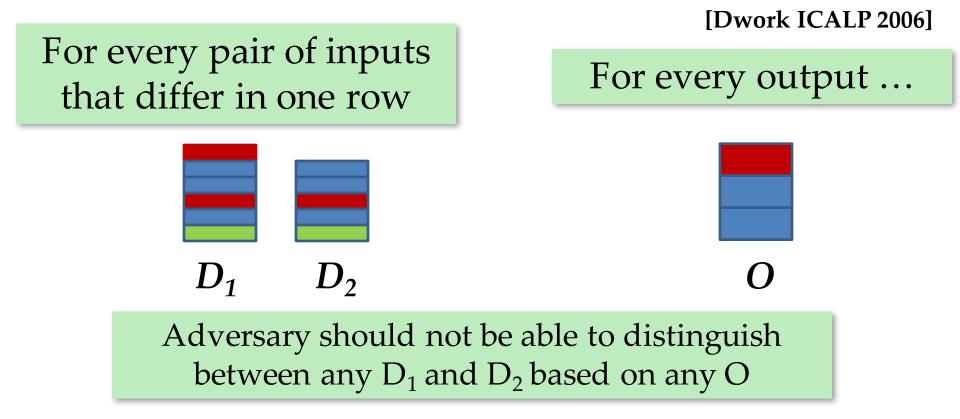
Building complex DP algorithms using composition

Privacy & Fairness in Data Science CompSci 590.01 Fall 2018

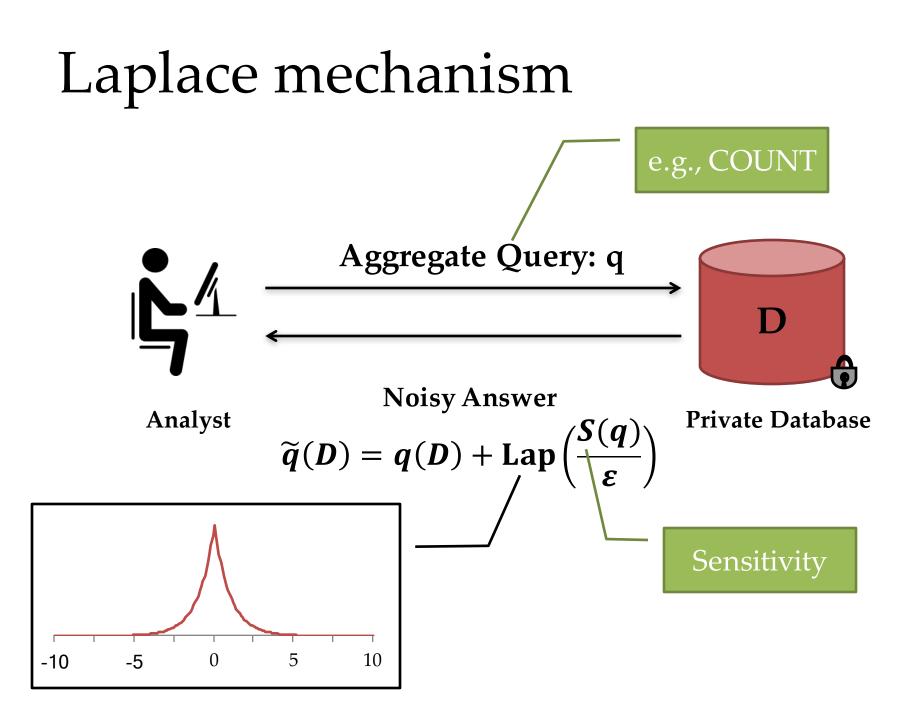
Outline

- Recap
 Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
 - Utilizing Parallel Composition
 - Postprocessing & Inference
 - Strategy Selection
 - Data dependent noise

Differential Privacy



$$\forall \Omega \in \operatorname{range}(A), \ln\left(\frac{\Pr[A(D_1) \in \Omega]}{\Pr[A(D_2) \in \Omega]}\right) \le \varepsilon, \quad \varepsilon > 0$$



Laplace Mechanism

Theorems:

$$E\left(\left(\tilde{q}(D) - q(D)\right)^2\right) = 2\left(\frac{S(q)}{\varepsilon}\right)^2$$

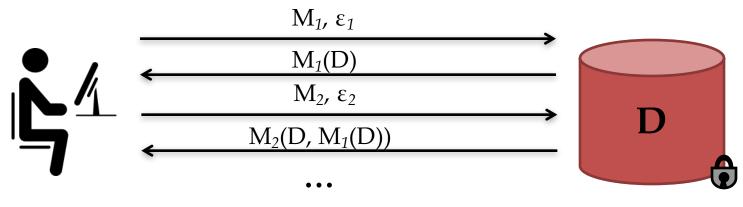
Error is *data independent* Depends on *q* and ε , but not on D

$$Pr\left[\left|\tilde{q}(D) - q(D)\right| \ge \frac{S(q)}{\varepsilon} \ln\left(\frac{1}{\delta}\right)\right] \le \delta$$

Outline

- Recap
 Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
 - Utilizing Parallel Composition
 - Postprocessing & Inference
 - Strategy Selection
 - Data dependent noise

Sequential Composition



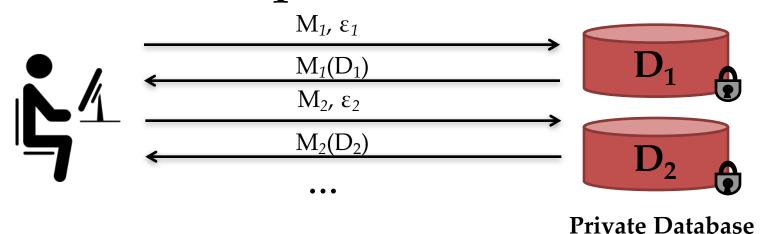
Private Database

 If M₁, M₂, ..., M_k are algorithms that access a private database D such that each M_i satisfies ε_i -differential privacy,

then the combination of their outputs satisfies ϵ -differential privacy with

$$\varepsilon = \varepsilon_1 + \dots + \varepsilon_k$$

Parallel Composition

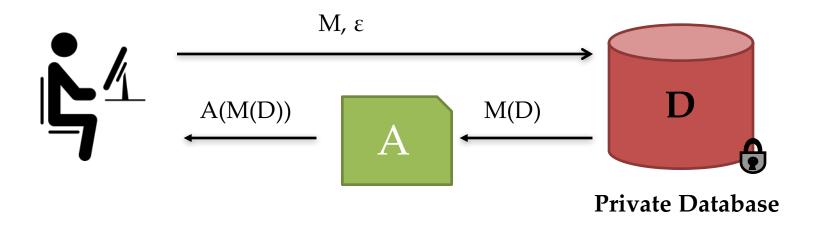


 If M₁, M₂, ..., M_k are algorithms that access are algorithms that access disjoint databases D₁, D₂, ..., D_k such that each M_i satisfies ε_i -differential privacy,

then the combination of their outputs satisfies ϵ -differential privacy with

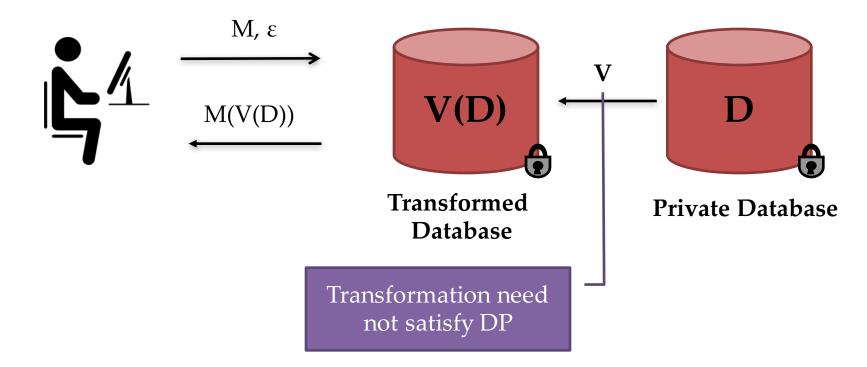
$$\varepsilon = \max(\varepsilon_1, \dots, \varepsilon_k)$$

Postprocessing



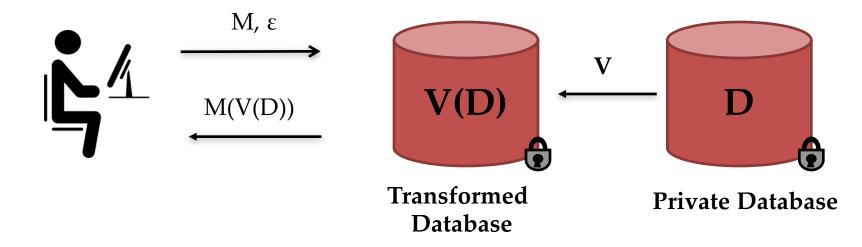
 If *M* is an ε-differentially private algorithm, any additional post-processing *A* ∘ *M* also satisfies εdifferential privacy.

Transformations & Stability



- σ_V : Stability of the transformation
 - Maximum number of rows in V that can change due to changing a single row in D

Transformations & Stability



- Executing an ε -differentially private algorithm M on a transformation of a database V(D) satisfies $\varepsilon \cdot \sigma_V$ -differential privacy.
- σ_V : Stability of the transformation
 - Maximum number of rows in V that can change due to changing a single row in D

Transformations & Stability

• V_1 : For each row (x1, x2, x3) \rightarrow (x1, x2+x3)

Stability = 1

 V₂: Each row in D is a tweet (id, {words}). For each row in D, generate k rows with first k words {(id, word₁), ..., (id, word_k)}

Stability = k

V₃: Sample each row with probability p.
 Stability = 1 ... but can prove 2pε -differential privacy*

*Adam Smith, Differential Privacy and Secrecy of the Sample

Outline

- Recap
 Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms

 Utilizing Parallel Composition
 - Postprocessing & Inference
 - Strategy Selection
 - Data dependent noise

Problem

Sex	Height	Weight
М	6'2''	210
F	5'3"	190
F	5′9″	160
Μ	5'3"	180
М	6'7''	250

Queries:

- # Males with BMI < 25
- # Males
- # Females with BMI < 25
- # Females

- Design an ε-differentially private algorithm that can answer all these questions.
- What is the total error?

Algorithm 1

Return:

- # Males with $BMI < 25 + Lap(4/\epsilon)$
- # Males + Lap $(4/\epsilon)$
- # Females with BMI < $25 + Lap(4/\epsilon)$
- # Females + $Lap(4/\epsilon)$

Privacy

- BMI can be computed by transforming each row (s, h, w) → (s, bmi). This is stability 1.
- Sensitivity of count = 1. So each query is answered using a $\epsilon/4$ -DP algorithm.
- By sequential composition, we get ε -DP.

Utility

Error:

$$\sum E\left(\left(\tilde{q}(D)-q(D)\right)^2\right)$$

Total Error:

$$2\left(\frac{4}{\varepsilon}\right)^2 \times 4 = \frac{128}{\varepsilon^2}$$

Algorithm 2

Compute:

- $\widetilde{q_1} = #$ Males with BMI < 25 + Lap $(1/\epsilon)$
- $\widetilde{q_2} = #$ Males with BMI > 25 + Lap $(1/\epsilon)$
- $\widetilde{q_3} = #$ Females with BMI < 25 + Lap(1/ ε)
- $\widetilde{q_4}$ = # Females with BMI > 25 + Lap(1/ ε)

Return

• $\widetilde{q_1}, \widetilde{q_1} + \widetilde{q_2}, \widetilde{q_3}, \widetilde{q_3} + \widetilde{q_4}$

Privacy

- Sensitivity of count = 1. So each query is answered using a ε-DP algorithm.
- q_1, q_2, q_3, q_4 are counts on disjoint portions of the database. Thus by *parallel composition* releasing $\widetilde{q_1}, \widetilde{q_2}, \widetilde{q_3}, \widetilde{q_4}$ satisfies ε -DP.
- By the *postprocessing theorem*, releasing $\widetilde{q_1}$, $\widetilde{q_1} + \widetilde{q_2}$, $\widetilde{q_3}$, $\widetilde{q_3} + \widetilde{q_4}$ also satisfies ε -DP.

Utility

Error:

$$\sum E\left(\left(\tilde{q}(D)-q(D)\right)^2\right)$$

Total Error:

$$2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} + 2\left(\frac{1}{\varepsilon}\right)^{2} + 2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} = \frac{12}{\varepsilon^{2}}$$

 $\widetilde{q_1} \qquad \widetilde{q_1} + \widetilde{q_2} \qquad \widetilde{q_3} \qquad \widetilde{q_3} + \widetilde{q_4}$

Tighter privacy analysis gives better accuracy for the same level of privacy

Total Error:

$$2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} + 2\left(\frac{1}{\varepsilon}\right)^{2} + 2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} = \frac{12}{\varepsilon^{2}}$$

 $\widetilde{q_1} \qquad \widetilde{q_1} + \widetilde{q_2} \qquad \widetilde{q_3} \qquad \widetilde{q_3} + \widetilde{q_4}$

Generalized Sensitivity

• Let $f: \mathcal{D} \to \mathbb{R}^d$ be a function that outputs a vector of *d* real numbers. The sensitivity of *f* is given by:

$$S(f) = \max_{D,D': |D\Delta D'|=1} ||f(D) - f(D')||_1$$

where $\|\mathbf{x} - \mathbf{y}\|_{1} = \sum_{i} |x_{i} - y_{i}|$

Generalized Sensitivity

- $q_1 = #$ Males with BMI < 25
- $q_2 = #$ Males with BMI > 25
- q = # Males with BMI
- Let f_1 be a function that answers both q_1 , q_2
- Let f_2 be a function that answers both q_1 , q
- Sensitivity of $f_1 = 1$
- Sensitivity of $f_2 = 2$
- An alternate privacy proof for Alg 2 is to show that the generalized sensitivity of $\tilde{q_1}$, $\tilde{q_2}$, $\tilde{q_3}$, $\tilde{q_4}$ is 1.

Outline

- Recap
 Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
 - Utilizing Parallel Composition
 - Postprocessing & Inference
 - Strategy Selection
 - Data dependent noise

Improving utility of Alg 2

Compute:

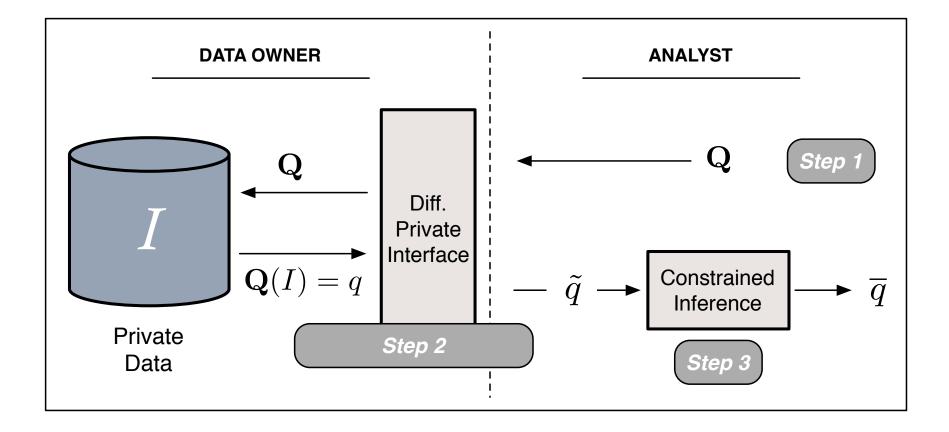
- $\widetilde{q_1} = #$ Males with BMI < 25 + Lap $(1/\epsilon)$
- $\widetilde{q_2} = #$ Males with BMI > 25 + Lap $(1/\epsilon)$

Return

• $\widetilde{q_1}$, $\widetilde{q_1}$ + $\widetilde{q_2}$

We know $q_1 \le q_1 + q_2$, but $P[\widetilde{q_1} > \widetilde{q_1} + \widetilde{q_2}] > 0$

Constrained Inference



Constrained Inference

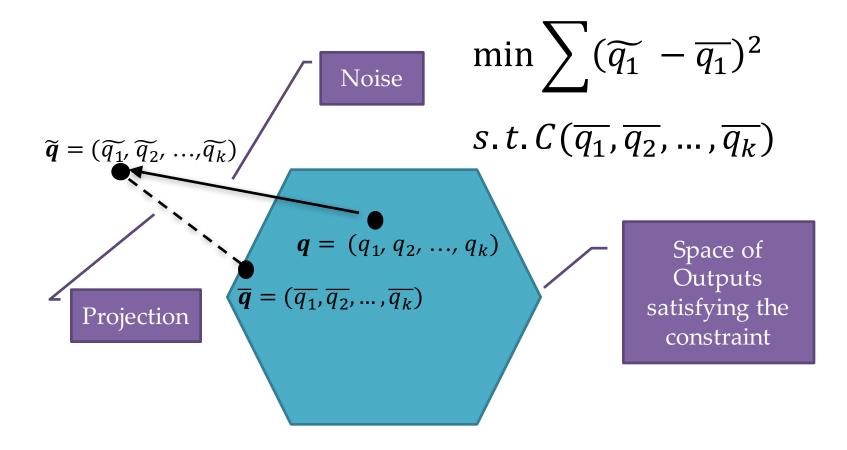
- q_1, q_2, \ldots, q_k be a set of queries
- $\widetilde{q_1}, \widetilde{q_2}, ..., \widetilde{q_k}$ be the noisy answers
- Constraint $C(q_1, q_2, ..., q_k) = 1$ holds on true answers (for all typical databases), but does not hold on noisy answers.
- Goal: Find $\overline{q_1}$, $\overline{q_2}$, ..., $\overline{q_k}$ that are:
 - Close to $\widetilde{q_1}, \widetilde{q_2}, ..., \widetilde{q_k}$
 - Satisfy the constraint $C(\overline{q_1}, \overline{q_2}, ..., \overline{q_k})$

Least Squares Optimization

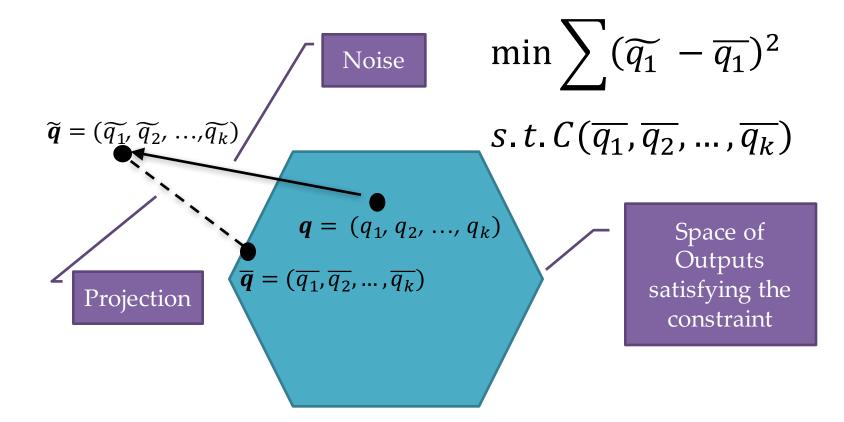
$$\min \sum (\widetilde{q_1} - \overline{q_1})^2$$

s.t. $C(\overline{q_1}, \overline{q_2}, \dots, \overline{q_k})$

Geometric Interpretation



Geometric Interpretation



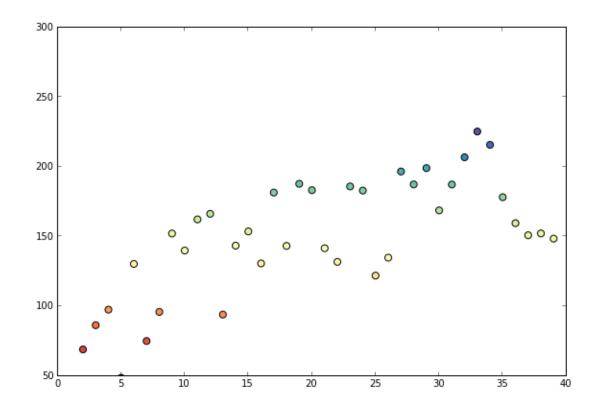
Theorem: $\|\boldsymbol{q} - \overline{\boldsymbol{q}}\|_2 \le \|\boldsymbol{q} - \widetilde{\boldsymbol{q}}\|_2$ when the constraints form a convex space

Ordering Constraint

Isotonic Regression:

 $\min\sum (\widetilde{q_1} - \overline{q_1})^2$

 $s.t.\overline{q_1} \leq \overline{q_1} \leq \dots \leq \overline{q_k}$



Outline

- Recap
 Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
 - Utilizing Parallel Composition
 - Postprocessing & Inference
 - Strategy Selection
 - Data dependent noise

Problem

Sex	Height	Weight
М	6'2''	210
F	5'3"	190
F	5′9″	160
Μ	5'3"	180
М	6'7''	250

Queries:

- # people with height in [5'1", 6'2"]
- # people with height in [2'0", 4'0"]
- # people with height in [3'3", 7'0"]

- Design an ε-differentially private algorithm that can answer all range queries.
- What is the total error?

Problem

- Let $\{v_1, ..., v_k\}$ be the domain of an attribute
- Let {x₁, ..., x_k} be the number of rows with values v₁, ..., v_k
- Range Query: $q_{ij} = x_i + x_{i+1} + ... + x_j$
- Goal: Answer all range queries

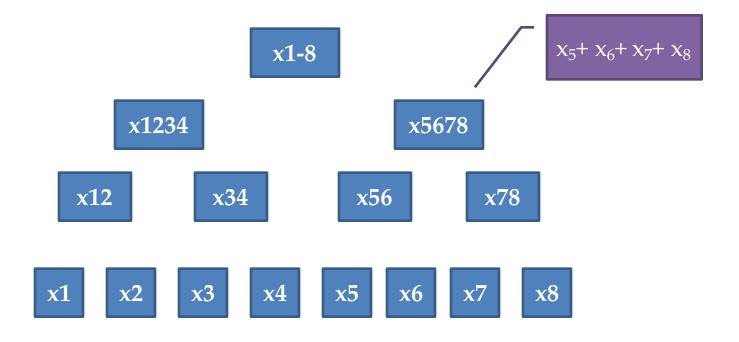
Strategy 1:

- Answer all range queries using Laplace mechanism
- Sensitivity: $O(k^2)$
- Total Error: $O(k^4/\epsilon^2)$

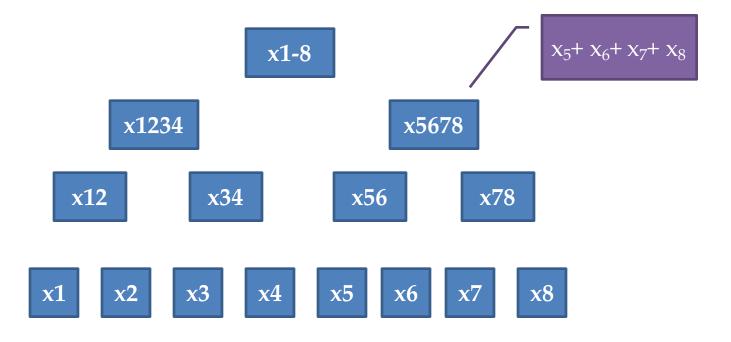
Strategy 2:

- Estimate each individual x_i using Laplace mechanism
- Answer: $q_{ij} = \widetilde{x_i} + \widetilde{x_{i+1}} + \ldots + \widetilde{x_j}$
- Error in each $\widetilde{x}_i: O(1/\varepsilon^2)$
- Error in q_{1k} : $O(k/\varepsilon^2)$
- Total Error: $O(k^3/\varepsilon^2)$

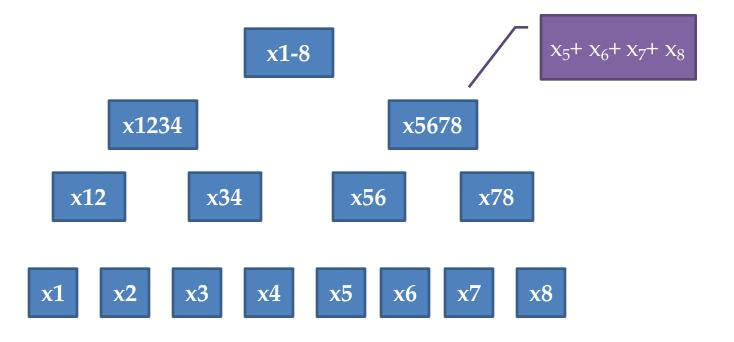
• Estimate all the counts in the tree below using Laplace mechanism



- Sensitivity: log k
- Every range query can be answered by summing up at most 2 log *k* nodes in the tree.

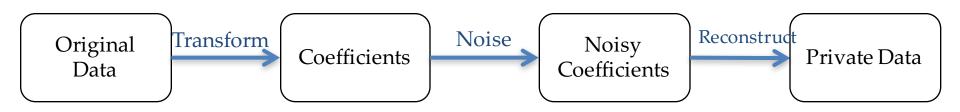


- Error in each node: $O((\log k)^2 / \varepsilon^2)$
- Max error on a range query: $O((\log k)^3 / \varepsilon^2)$
- Total Error: $O(k^2(\log k)^3/\varepsilon^2)$



- Error in each node: $O((\log k)^2 / \varepsilon^2)$
- Max error on a range query: $O((\log k)^3 / \varepsilon^2)$
- Total Error: $O(k^2(\log k)^3/\varepsilon^2)$
- Error can be further reduced using constrained inference
 - Here the constraint is that parent counts should not be smaller than child counts.

Strategy based mechanisms

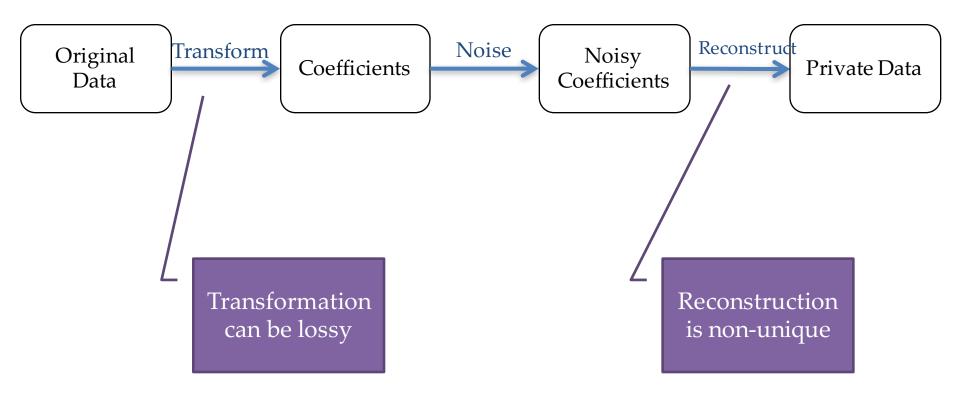


- Can think of nodes in the tree as coefficients.
- Other algorithms use other transformations
 - Wavelets, Fourier coefficients
- Should be able to *losslessly* reconstruct the original data/query answers.
- General Idea:
 - Apply transform
 - Add noise to the transformed space (based on sensitivity)
 - Reconstruct original data/query answers from noisy coefficients

Outline

- Recap
 Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
 - Utilizing Parallel Composition
 - Postprocessing & Inference
 - Strategy Selection
 - Data dependent noise

Data dependent noise mechanisms



[LHMY14] Li et al. A data- and workload-aware algorithm for range queries under differential privacy. In PVLDB, 2014.

Data dependent noise mechanisms

• Use a data dependent sensitivity measure called Smooth sensitivity.

K. Nissim, S. Raskhodnikova, A. Smith, "Smooth Sensitivity and sampling in private data analysis", STOC 2007

Summary

- Composition theorems help build complex algorithms using simple building blocks
 - Sequential composition
 - Parallel composition
 - Postprocessing
 - *There are more advanced forms of composition.*

Summary

- For the same privacy budget, a better designed algorithm can extract more utility
 - When possible use parallel composition
 - Inference on constraints between queries can reduce error
 - Answering a different *strategy* of queries can help reduce error