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Relaxation of Differential Privacy

(¢, 0)-Differential Privacy: The distribution of the output
M(D) on database D is (nearly) the same as M(D’):

V' S: Pr[M(D)ES] < exp(¢) - Pr[M(D')ES]+9.

privacy loss /

allows for a small probability of failure

Dwork, Kenthapadi, McSherry, Mironov, Naor “Our data, Ourselves”, EUROCRYPT 2006



(g, 8)-Differential Privacy

e Robust to auxiliary data
e Post-processing:
If M(D) is (g, 6)-differentially private, so is iM(D)).
e Composability:
(£1,61)-DP and (g2,02)-DP is (g1t€2,01102)-DP.
e (Group privacy:
Graceful degradation in the presence of
correlated inputs.



Why (g, 0)-Differential Privacy?

Three common use cases:

1. o probability of failure
2. Gaussian noise
3. Advanced composition theorems



Why (g, 0)-Differential Privacy?

I. 6 probability of failure

Mechanism

Let ¢ + 41‘5 Ll

if § =0 then

18¢(log(2|Q|) +log(4c/8;
Let T « 4_(_%[]9)”_"1_&(@

else

Let T «
end if

Initialize N
{f{}, outputti
Let ¢t + 0, and

if BAD then GivE UpP

for each query f; do
Let f5; 1 () = fi(*) = fi(
Let f3,(-) = fi(z") - §
if Fy;—1 = 1 and FEy = | then
Let a; = fi(z")
else
if Egi—1 € R then
Let a; = fi(z") + E2i1

else
Let a; = fi(z!) — By
end if
Let ztt! = MW (!, fi,a;)
Let t + t+ 1.
end if

end for

Analysis

Proof. Unlike for multiplicative weights, it will be more convenient to
analyze the Perceptron algorithm without normalizing the database to
be a probability distribution, and then prove that it is a 7'(c/) database

update algorithm for
complete the proof.
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We use a potential argu w that for every t =1,2,...,L,

zt*! is significantly closer to z than z!. Specifically, our potential func-
tion is the L3 norm of the database z — z¢, defined as

llzl3 = Y- =(@)*.
i€X

Observe that ||z — 2|3 = ||z|3 since 2! = 0, and ||z||3 > 0. Thus it
suffices to show that in every step, the potential decreases by o/?/|X|.
We analyze the case where f;(z!) > v;, the analysis for the opposite
case will be similar. Let R! = z* — z. Observe that in this case we have

fi(RY) = fi(a") — fi() > .



What Can o Hide?

“Nuclear Option”:

e With probability 6 publish everything
e With probability 1 publish & fraction of inputs

Recommendations

N

0 < 1/N or od=negl(1/N)




Why (¢, 8)-Differential Privacy?

II. Gaussian Mechanism

Normal distribution: f(D)+ N(0,1)
e Spherically symmetrical
e Closed under addition

e “Noise-like”

e Tightly concentrated

. - \ J
e-Differential Privacy 0

<



(g, 8)-Differential Privacy of Gaussian




Why (e, 6)-Differential Privacy?

[1I. Advanced Composition Theorem

Basic Composition:
Composition of €:-DP and €:-DP is (e1+¢2)-DP
n-fold composition of &-DP is ne-DP

Advanced Composition:

n-fold composition of e-DP is (y/2nIn(1/9) &, §)-DP for § < 1




Proof of Advanced Composition

1. Privacy loss variable

~In [[ ;((5/);] where x ~ AD).

2. Azuma inequality for (a, B)-martingales:

R...,R suchthat |R|<aandE[R|R,....R ] <P then

Pri>" R > nB + zy/nal < e = /2

3. &DP = privacy loss variable is a (g, £?)-martingale

Dwork, Rothblum, Vadhan “Boosting and Differential Privacy”, FOCS 2010



Trouble with (g, 6)-Differential Privacy

e Gaussian mechanism does not have catastrophic failure!



Trouble with (g, 6)-Differential Privacy

e Gaussian mechanism does not have catastrophic failure!
e Composing advanced composition
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Trouble with (g, 6)-Differential Privacy

e Gaussian mechanism does not have catastrophic failure!
e Composing advanced composition

(g1, 8:)-DP [

&-DP

- (82, 62)'DP

= (g5, 8:)-DP | > - #P hard!
¢ -DP

(8n9 8n)-D P -

Murtagh, Vadhan, "The complexity of computing the optimal composition of differential privacy”, TCC 2016-A.



Trouble with (g, 6)-Differential Privacy

e Gaussian mechanism does not have catastrophic failure!
e Composing advanced composition

/5 (,(5), 5)-DP | )
e V8 (£,(3), 5)-DP

g-DP o) b
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Trouble with (g, 6)-Differential Privacy

e Gaussian mechanism does not have catastrophic failure!
e Composing advanced composition
e (Gaussian + Advanced composition is not tight
N(0,1) Gaussian | > (¢, 8)-DP
@advanced composition

——V4(0,1) Gaussian
Gap




Why (g, 0)-Differential Privacy?

Three common use cases:

1. o probability of failure
2. Gaussian noise
3. Advanced composition theorems




Better Notion of Closeness

g-Differential Privacy: Reényi Divergence at 0o:

max P(z)/Q(z) < Dx(PIIQ) < ¢




Renyi Divergence

p(@}

D\(PI|Q) = lim, Da(PQ) = Ep |log 7523
o (P(x)\™
Da(P||Q) = —log Eq _<Q(x)> _
P(z)

Dol PI1Q) = Jim, Da(PIQ) = log max 25



Rényi Differential Privacy

(a, €)-Rényi Differential Privacy (RDP):
vV D,D": D (M(D) || M(D")) <e.



Relaxation of Differential Privacy

(o0, £)-RDP is &-DP



Implies (¢, d)-Differential Privacy

log 1/6

a—1"

(., £)-RDP = (¢

5)-DP for any &



“Bad Outcomes” Interpretation

<+ t e c— t = :I-;-i-;:
102 103 104 105 106 107 108 109 110 111 112 113

B - bad outcomes
B — probability with record x

B — probability without record x )



“Bad Outcomes” Interpretation

e-Differential Privacy: V.S Pr[M(D)eS] <e® - Pr[M(D")€S]
(o, €)-Rényi Diff Privacy: VS Pr[M(D)ES] < (e* - Pr[M(D"€ES])!-""

(¢, 8)-Differential Privacy: VS Pr[M(D)€S] < e® - Pr[M(D")ES] + &



No Catastrophic Failure Mode!

PAN

PI’[M(D)ES] < (eg : PI’[M(D')/ES])l'l/O‘

Q//




Monotonicity

For a1 > a:
(a1, €)-RDP = (a:, £)-RDP



Composable!

Simultaneous release of («, £:)-RDP and («, €:)-RDP is

(a, e1t€2)-RDP



Proof of Advanced Composition

1. Privacy loss variable

J(D )
R~ In =7 whey

2. Azuma inequality for (a, / 1. Switch to e**
R... R suchthat|/ 2- ApplyMarkov'stoE

3. Optimize A

3. &-DP = privacy loss variable iy

Dwork, Rothblum, Vadhan “Boosting and Differential Privacy”, FOCS 2010



Renyi Budget Curve
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Rényi Budget Curve: Laplace Mechanism




Reényi Budget Curve: Gaussian Mechanism




More Complex Mechanisms
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Geumlek, Song, Chaudhuri, “Renyi Differential Privacy
Mechanisms for Posterior Sampling”, (NIPS 2017)



Rényi Differential Privacy as a Privacy Accountant

>M1>>Mz> 2

RDP
2 8 8 8 (2 v )
3 L3 23 23 5 (3,¢,) (g 5)-DP
32 81-3 82-3 8n-3 > (32 832)




Why 2 to 32?

(a, €)-Rényi Diff Privacy: VS Pr[M(D)€S] < (e° - Pr[M(D"€S])" "



Convergence of ldeas

Prior work: Dwork, Rothblum, Vadhan (FOCS 2010)
Dwork, Rothblum (2016)
Lattice-based cryptography
This work: “Rényi Differential Privacy” (CSF 2016)
Concurrent work:  Bun, Steinke (TCC 2016-B)
Abadi et al. (ACM CCS 2016)
Papernot et al. (ICLR 2017)
Applications: Geumlek, Song, Chaudhuri (NIPS 2017)



Summary

e Rényi Differential Privacy: generalization and relaxation of
differential privacy
e RDP fixes problems of (g, 6)-DP:
o No catastrophic failure mode
o Tight analysis of Gaussian noise
o Easy composition of heterogeneous mechanisms



