Rényi Differential Privacy

Ilya Mironov Google Brain

DIMACS, October 24, 2017

Relaxation of Differential Privacy

 (ε, δ) -Differential Privacy: The distribution of the output M(D) on database D is (nearly) the same as M(D'):

Dwork, Kenthapadi, McSherry, Mironov, Naor "Our data, Ourselves", EUROCRYPT 2006

(ϵ, δ) -Differential Privacy

- Robust to auxiliary data
- Post-processing: If M(D) is (ε, δ)-differentially private, so is f(M(D)).
- Composability:

 (ε_1,δ_1) -DP and (ε_2,δ_2) -DP is $(\varepsilon_1+\varepsilon_2,\delta_1+\delta_2)$ -DP.

• Group privacy:

Graceful degradation in the presence of correlated inputs.

Why (ε, δ) -Differential Privacy?

Three common use cases:

- 1. δ probability of failure
- 2. Gaussian noise
- 3. Advanced composition theorems

Why (ε, δ) -Differential Privacy? I. δ probability of failure

Mechanism

Analysis

Proof. Unlike for multiplicative weights, it will be more convenient to analyze the Perceptron algorithm without normalizing the database to be a probability distribution, and then prove that it is a $T(\alpha')$ database

update algorithm for f complete the proof. I view $f_t \in [0, 1]^{|\mathcal{X}|}$ as to $\langle f_t, x \rangle$. We must show the erty that $|f_t(x^t) - f$ $L > \frac{||x||_2^2 |\mathcal{X}|}{2^{\sigma}}$.

We use a potential arguments show that for every t = 1, 2, ..., L, x^{t+1} is significantly closer to x than x^t . Specifically, our potential function is the L_2^2 norm of the database $x - x^t$, defined as

$$\|x\|_2^2 = \sum_{i\in\mathcal{X}} x(i)^2.$$

Observe that $||x - x^1||_2^2 = ||x||_2^2$ since $x^1 = 0$, and $||x||_2^2 \ge 0$. Thus it suffices to show that in every step, the potential decreases by $\alpha'^2/|\mathcal{X}|$. We analyze the case where $f_t(x^t) > v_t$, the analysis for the opposite case will be similar. Let $R^t = x^t - x$. Observe that in this case we have

 $f_t(R^t) = f_t(x^t) - f_t(x) \ge \alpha'.$

What Can δ Hide?

"Nuclear Option":

- With probability δ publish everything
- With probability 1 publish δ fraction of inputs

 $\delta \ll 1/N \quad \text{or} \quad \delta = \text{negl}(1/N)$

Why (ε, δ) -Differential Privacy? II. Gaussian Mechanism

Normal distribution: f(D) + N(0, 1)

- Spherically symmetrical
- Closed under addition
- "Noise-like"
- Tightly concentrated

(ϵ, δ) -Differential Privacy of Gaussian

Why (ε, δ) -Differential Privacy? III. Advanced Composition Theorem

Basic Composition:

Composition of ϵ_1 -DP and ϵ_2 -DP is ($\epsilon_1+\epsilon_2$)-DP

n-fold composition of ε -DP is $n\varepsilon$ -DP

Advanced Composition:

n-fold composition of ε -DP is ($\sqrt{2n \ln(1/\delta)} \varepsilon$, δ)-DP for $\delta < 1$

1. Privacy loss variable $R \sim \ln \frac{\Pr[x=f(D)]}{\Pr[x=f(D')]}$ where $x \sim f(D)$.

2. Azuma inequality for (α, β) -martingales: $R_1, ..., R_n$ such that $|R_i| \le \alpha$ and $\mathbb{E}[R_i|R_1, ..., R_{i-1}] \le \beta$ then $\Pr\left[\sum_{i=1}^n R_i > n\beta + z\sqrt{n\alpha}\right] \le e^{-z^2/2}$

3. ϵ -DP \Rightarrow privacy loss variable is a (ϵ , ϵ^2)-martingale

Dwork, Rothblum, Vadhan "Boosting and Differential Privacy", FOCS 2010

• Gaussian mechanism does not have catastrophic failure!

- Gaussian mechanism does not have catastrophic failure!
- Composing advanced composition

- Gaussian mechanism does not have catastrophic failure!
- Composing advanced composition

Murtagh, Vadhan, ``The complexity of computing the optimal composition of differential privacy", TCC 2016-A.

- Gaussian mechanism does not have catastrophic failure!
- Composing advanced composition

- Gaussian mechanism does not have catastrophic failure!
- Composing advanced composition
- Gaussian + Advanced composition is not tight

Why (ε, δ) -Differential Privacy?

Three common use cases:

- 1. δ probability of failure
- 2. Gaussian noise
- 3. Advanced composition theorems

Better Notion of Closeness

ε-Differential Privacy:

Rényi Divergence at ∞ :

 $\max_{x} P(x)/Q(x) < e^{\varepsilon} \qquad D_{\infty}(P||Q) < \varepsilon$

Rényi Divergence

$$D_1(P||Q) = \lim_{\alpha \to 1} D_\alpha(P||Q) = E_P \left[\log \frac{P(x)}{Q(x)} \right]$$
$$D_\alpha(P||Q) = \frac{1}{\alpha - 1} \log E_Q \left[\left(\frac{P(x)}{Q(x)} \right)^\alpha \right]$$
$$D_\infty(P||Q) = \lim_{\alpha \to \infty} D_\alpha(P||Q) = \log \max_x \frac{P(x)}{Q(x)}$$

Rényi Differential Privacy

(α, ε) -Rényi Differential Privacy (RDP):

 $\forall D, D': D_{\alpha}(M(D) || M(D')) \leq \varepsilon.$

Relaxation of Differential Privacy

(∞, ε) -RDP is ε -DP

Implies (ε, δ) -Differential Privacy

$$(\alpha, \varepsilon)$$
-RDP $\Rightarrow (\varepsilon + \frac{\log 1/\delta}{\alpha - 1}, \delta)$ -DP for any δ

"Bad Outcomes" Interpretation

- bad outcomes
- probability with record x
- probability without record x

"Bad Outcomes" Interpretation

- ε-Differential Privacy: $\forall S \operatorname{Pr}[M(D) \in S] \le e^{\varepsilon} \cdot \operatorname{Pr}[M(D') \in S]$
- (α, ε)-Rényi Diff Privacy: ∀S Pr[M(D) ∈ S] ≤ $(e^ε · Pr[M(D') ∈ S])^{1-1/α}$

(ε, δ)-Differential Privacy: $\forall S \Pr[M(D) \in S] \le e^ε \cdot \Pr[M(D') \in S] + δ$

No Catastrophic Failure Mode!

$\Pr[M(D) \in S] \le (e^{\varepsilon} \cdot \Pr[M(D') \in S])^{1-1/\alpha}$

Monotonicity

For $\alpha_1 \ge \alpha_2$: (α_1, ε) -RDP $\Rightarrow (\alpha_2, \varepsilon)$ -RDP

Composable!

Simultaneous release of (α, ε_1) -RDP and (α, ε_2) -RDP is

 $(\alpha, \varepsilon_1 + \varepsilon_2)$ -RDP

Proof of Advanced Composition

1. Privacy loss variable

$$R \sim \ln \frac{\Pr[x=f(D)]}{\Pr[x=f(D')]}$$
 where
2. Azuma inequality for $(\alpha, \beta, 1)$ Switch to $e^{\lambda R}$
 R_1, \dots, R_n such that $|P|=2$. Apply Markov's to E hen
 $\Pr[\sum_{i=1}^n R_i > n_i]$ 3. Optimize λ
3. ϵ -DP \Rightarrow privacy loss variable is

Dwork, Rothblum, Vadhan "Boosting and Differential Privacy", FOCS 2010

Rényi Budget Curve

Rényi Budget Curve: Laplace Mechanism

Rényi Budget Curve: Gaussian Mechanism

More Complex Mechanisms

Geumlek, Song, Chaudhuri, "Renyi Differential Privacy Mechanisms for Posterior Sampling", (NIPS 2017)

Rényi Differential Privacy as a Privacy Accountant

Why 2 to 32?

(α, ε) -Rényi Diff Privacy: $\forall S$ Pr[M(D)∈S] ≤ $(e^{\varepsilon} \cdot Pr[M(D') \in S])^{1-1/\alpha}$

Convergence of Ideas

Prior work:

This work: Concurrent work:

Applications:

Dwork, Rothblum, Vadhan (FOCS 2010) Dwork, Rothblum (2016) Lattice-based cryptography "Rényi Differential Privacy" (CSF 2016) Bun, Steinke (TCC 2016-B) Abadi et al. (ACM CCS 2016) Papernot et al. (ICLR 2017) Geumlek, Song, Chaudhuri (NIPS 2017)

Summary

- Rényi Differential Privacy: generalization and relaxation of differential privacy
- RDP fixes problems of (ε, δ) -DP:
 - No catastrophic failure mode
 - Tight analysis of Gaussian noise
 - Easy composition of heterogeneous mechanisms