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Relaxation of Differential Privacy

(ε, δ)-Differential Privacy: The distribution of the output 
M(D) on database D is (nearly) the same as M(D′):

∀S:    Pr[M(D)∊S] ≤ exp(ε) ∙ Pr[M(D′)∊S]+δ.

privacy loss
allows for a small probability of failure

Dwork, Kenthapadi, McSherry, Mironov, Naor “Our data, Ourselves”, EUROCRYPT 2006
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● Robust to auxiliary data
● Post-processing:

If M(D) is (ε, δ)-differentially private, so is f(M(D)).
● Composability:

(ε₁,δ₁)-DP and (ε₂,δ₂)-DP is (ε₁+ε₂,δ₁+δ₂)-DP.
● Group privacy:

Graceful degradation in the presence of
correlated inputs.

(ε, δ)-Differential Privacy



Why (ε, δ)-Differential Privacy?

Three common use cases:

1. δ probability of failure
2. Gaussian noise
3. Advanced composition theorems



Why (ε, δ)-Differential Privacy?
I. δ probability of failure

Mechanism Analysis



What Can δ Hide? 

“Nuclear Option”:

● With probability δ publish everything
● With probability 1 publish δ fraction of inputs

δ ≪ 1/N or     δ = negl(1/N)

Recommendations



Why (ε, δ)-Differential Privacy?
II. Gaussian Mechanism

ε-Differential Privacy  δ

Normal distribution:
● Spherically symmetrical
● Closed under addition
● “Noise-like”
● Tightly concentrated



(ε, δ)-Differential Privacy of Gaussian

ε

δ



Why (ε, δ)-Differential Privacy?
III. Advanced Composition Theorem

Basic Composition:

Composition of ε₁-DP and ε₂-DP is (ε₁+ε₂)-DP

n-fold composition of ε-DP is nε-DP

Advanced Composition:

n-fold composition of ε-DP is (   ε, δ)-DP for δ < 1



Proof of Advanced Composition

1. Privacy loss variable 

R ~  where x ~ f(D).

2. Azuma inequality for (α, β)-martingales:
R1,..., Rn such that |Ri| ≤ α and E[Ri|R1,…,Ri-1] ≤ β then

3. ε-DP ⇒ privacy loss variable is a (ε, ε2)-martingale

Dwork, Rothblum, Vadhan “Boosting and Differential Privacy”, FOCS 2010



Trouble with (ε, δ)-Differential Privacy 

● Gaussian mechanism does not have catastrophic failure!



Trouble with (ε, δ)-Differential Privacy 

● Gaussian mechanism does not have catastrophic failure!
● Composing advanced composition

ε₁-DP
ε₂-DP
ε₃-DP

...
εn-DP

(ε′, δ′)-DP



Trouble with (ε, δ)-Differential Privacy 

● Gaussian mechanism does not have catastrophic failure!
● Composing advanced composition

(ε₁, δ₁)-DP
(ε₂, δ₂)-DP
(ε₃, δ₃)-DP

...
(εn, δn)-DP

... #P hard!
ε₁-DP
ε₂-DP
ε₃-DP

...
εn-DP

Murtagh, Vadhan, ``The complexity of computing the optimal composition of differential privacy”, TCC 2016-A.



Trouble with (ε, δ)-Differential Privacy 

● Gaussian mechanism does not have catastrophic failure!
● Composing advanced composition

∀δ (ε1(δ), δ)-DP
∀δ (ε2(δ), δ)-DP
∀δ (ε3(δ), δ)-DP

...
∀δ (εn(δ), δ)-DP

... ???
ε₁-DP
ε₂-DP
ε₃-DP

...
εn-DP



Trouble with (ε, δ)-Differential Privacy 

● Gaussian mechanism does not have catastrophic failure!
● Composing advanced composition
● Gaussian + Advanced composition is not tight

N(0,1) Gaussian

Nd(0,1) Gaussian

(ε, δ)-DP
advanced composition

Gap



Why (ε, δ)-Differential Privacy?

Three common use cases:

1. δ probability of failure
2. Gaussian noise
3. Advanced composition theorems



Better Notion of Closeness

ε-Differential Privacy: Rényi Divergence at ∞:



Rényi Divergence



Rényi Differential Privacy

(𝛼, ε)-Rényi Differential Privacy (RDP): 

∀ D, D′: Dα(M(D) || M(D′)) ≤ ε.



Relaxation of Differential Privacy

(∞, ε)-RDP is ε-DP



Implies (ε, δ)-Differential Privacy 

(𝛼, ε)-RDP ⇒ (ε +   , δ)-DP for any δ



“Bad Outcomes” Interpretation

22

f(D) f(D′)

— bad outcomes
— probability with record x 
— probability without record x 



“Bad Outcomes” Interpretation

ε-Differential Privacy:  ∀S  Pr[M(D)∊S] ≤ eε ∙ Pr[M(D′)∊S]

(ε, δ)-Differential Privacy: ∀S  Pr[M(D)∊S] ≤ eε ∙ Pr[M(D′)∊S] + δ

(𝛼, ε)-Rényi Diff Privacy:  ∀S Pr[M(D)∊S] ≤ (eε ∙ Pr[M(D′)∊S])1-1/𝛼



No Catastrophic Failure Mode!

Pr[M(D)∊S] ≤ (eε ∙ Pr[M(D′)∊S])1-1/𝛼= 0

= 0



Monotonicity

 For 𝛼₁ ≥ 𝛼₂:
(𝛼₁, ε)-RDP ⇒ (𝛼₂, ε)-RDP



Composable!

Simultaneous release of (𝛼, ε₁)-RDP and (𝛼, ε₂)-RDP is 

(𝛼, ε₁+ε₂)-RDP



Proof of Advanced Composition

1. Privacy loss variable 

R ~  where x ~ f(D).

2. Azuma inequality for (α, β)-martingales:
R1,..., Rn such that |Ri| ≤ α and E[Ri|R1,…,Ri-1] ≤ β then

3. ε-DP ⇒ privacy loss variable is a (ε, ε2)-martingale

Dwork, Rothblum, Vadhan “Boosting and Differential Privacy”, FOCS 2010

1. Switch to e𝛌R

2. Apply Markov’s to E
3. Optimize 𝛌



Rényi Budget Curve

𝛼

ε

∞1

ε₂-DP

ε₁-DP f(D)

g(D)

(ε₁+ε₂)-DP f(D), g(D)



Rényi Budget Curve: Laplace Mechanism
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Rényi Budget Curve: Gaussian Mechanism
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More Complex Mechanisms

Geumlek, Song, Chaudhuri, “Renyi Differential Privacy 
Mechanisms for Posterior Sampling”, (NIPS 2017)



Rényi Differential Privacy as a Privacy Accountant

M₁ M₂ Mn
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(ε, δ)-DP



Why 2 to 32?

(𝛼, ε)-Rényi Diff Privacy:  ∀S Pr[M(D)∊S] ≤ (eε ∙ Pr[M(D′)∊S])1-1/𝛼



Convergence of Ideas

Prior work: Dwork, Rothblum, Vadhan (FOCS 2010)
Dwork, Rothblum (2016)
Lattice-based cryptography

This work: “Rényi Differential Privacy” (CSF 2016)
Concurrent work: Bun, Steinke (TCC 2016-B)

Abadi et al. (ACM CCS 2016)
Papernot et al. (ICLR 2017)

Applications: Geumlek, Song, Chaudhuri (NIPS 2017)



Summary

● Rényi Differential Privacy: generalization and relaxation of 
differential privacy

● RDP fixes problems of (ε, δ)-DP:
○ No catastrophic failure mode
○ Tight analysis of Gaussian noise
○ Easy composition of heterogeneous mechanisms


