
Differential Privacy 
Under Fire

(A. Haeberlen, B.C. Pierce, & A. Narayan)



Problem and Motivation

https://www.icann.org/news/blog/what-is-an-internet-covert-channel
https://www.techopedia.com/definition/10255/covert-channel
https://www.sans.org/reading-room/whitepapers/detection/covert-channels-33413


Problem and Motivation (cont.)



Attack Model

ε



Example 1: Timing Attack

noisy sum, foreach r in db, of {

if embarrassing(r)

then { pause for 1 second };

return 0

}

Adversary purposely sends bad value → figures out how quick the exit / default 
answer is vs. the normal query response → then can figure out exactly how many 
rows have embarrassing values



Example 2: State Attack

found = false;

noisy sum, foreach r in db, of {

if (found) then { return 1 }

if embarrassing(r) then {

found = true;

return 1

} else { return 0 }

}

Adversary maintains a global variable between microqueries → result of each 
microquery is 0 or 1, depending on whether any previous microquery detected an 
embarrassing record → and since embarrassing one is generally not last in database, 
this greatly magnifies the contribute of this one row to result (violating diff. privacy)



Example 3: Privacy Budget Attack

noisy sum, foreach r in db, of {

if embarrassing(r) then {

run sub-query that uses a lot of the privacy budget

} else {

return 0

}

}

Adversary looks for an embarrassing record → invokes some sub-query that will use 
up some of the remaining privacy budget → then, when outer query is returned, 
adversary checks how much the privacy budget has decreased (e.g., learning 
something about the privacy budget consumed by that row)



Approach

Both of these are systems that implement a programming language in which every 
well-typed program is guaranteed to be differentially private. Thus, “(untrusted) 
non-experts can write as many different algorithms as they like, and the database 
administrator can rely on the language to ensure that privacy is not being violated.”

https://www.microsoft.com/en-us/research/project/privacy-integrated-queries-pinq/
https://www.usenix.org/legacy/event/nsdi10/tech/full_papers/roy.pdf


Approach (cont.)



Testing PINQ

…



Testing Airavat



Building Fuzz

Deduction from privacy budget is independent of database contents!



Building Fuzz (cont.)

Pad rows to consume the same amount of memory
Pad all database objects to have the same number of rows
Add appropriate number of dummy rows that consume memory and computation time
Disable garbage collector during microqueries



Evaluation



Results



Results (cont.)



Strengths / Weaknesses

Variable-time solutions, though allowing the size of the database can remain private, 
present some challenges. “In order to properly “noise” a resource like time, we must 
have the ability to both increase and decrease its consumption. While we can clearly 
increase execution time by adding a delay, we cannot easily decrease it. We can 
mitigate this problem by adding a default delay T”, and then adding time noise v. 
“Nevertheless, since noise distributions guaranteeing differential privacy have 
unbounded support (i.e. P(v) > 0 for all v), there is always a possibility that v < -T, in 
which can we cannot complete the computation.”



Questions to Consider


