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Binary Classification

• Suppose we want a cat classifier. We need labeled training data.

= cat

= cat

= cat

!= cat



Binary Classification

• We learn a binary classifier, which is a function f from the input space 
(pictures, for example) to a binary class (e.g., 1 or 0).
• To classify a new data point, apply the function to make a prediction. 

Ideally, we get:

• f                                              = 1.



Fairness Through Awareness

• What does it mean to be fair in binary classification?
• According to Fairness Through Awareness: Similar data points should 

be classified similarly. 

• In pictures, it’s unfair to classify                                   as a cat, but 

classify                              as not a cat. 



Fairness Through Awareness
• We have a set V of data points. Let C = {0, 1} be a binary class. Let t(x) 

be the true binary class of x in V.  
• Let !: # → Δ& be a randomized classifier, where Δ& is the set of 

distributions over &.
• We have two notions of “distance” given as input.
• ': #×# → [0, 1] is a measure of distance between data points.

• Assume ' ., / = ' /, . ≥ 0 and ' ., . = 0.
• 2: Δ& × Δ& → ℝ is a measure of distance between distributions.

• E.g., total variation distance 245 6, 7 = 8 9 :; 9 < 8 = :; =
>

• f is fair if it satisfies the Lipshitz condition:
∀., / ∈ #, 2 ! . , ! / ≤ ' ., / .



Fairness Through Awareness

• Claim. There always exists a fair classifier.
• Proof. Let f be a constant function. Then

∀", $ ∈ &, ' ( " , ( $ = 0.□



Fairness Through Awareness

• Claim. Assuming ______, the only fair deterministic classifier is a 
constant function.
• Proof. Assume there exist data points x and y with ! ", $ < 1 and
' " ≠ '($). 
• If f is fair, then + , " , , $ < 1. Since f is deterministic, 
+ , " , , $ ∈ {0,1}, so it must be that + , " , , $ = 0. □
• Corollary (loosely stated)…
• Deterministic classifiers that are fair in this sense are useless.

• Make you think of differential privacy? 



Fairness Through Awareness

• To quantify the utility of a classifier, we need a loss function. For 
example, let ! ", $ = !

|#|∑$∈# ' " ( − * ( .
• Then the problem we want to solve is:

,-.. ! ", $
/. *. 0 " ( , " 1 ≤ 3 (, 1 ∀(, 1 ∈ $

• Can we do this efficiently?



Fairness Through Awareness

• We can write a linear program! 

!"#. 1
|'|(!∈#

)$ * − , * .

-. ,. |)% * − )% . +|)$ * − )$ .
2 ≤ 2 *, . ∀*, . ∈ '

)% * + )$ * = 1 ∀* ∈ '



Fairness Through Awareness: Caveats
• f is only fair ex ante. 
• f makes a promise about your distribution; Ex post, you might receive an

arbitrarily unfair draw from that distribution. As we saw, this is necessary.

• Where does the distance metric d come from?
• Note that for any classifier f, there exists d such that f is fair.
• d might actually be more difficult to learn accurately than a good f!

• Fairness in this sense makes no promises of group parity.
• If individuals of one racial group are, on average, a large distance from those 

of another, a “fair” algorithm is free to discriminate between the groups.
• For more on this, see sections 3 and 4.
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Recap: Disparate Impact

• Suppose we are contracted by Duke admissions to build a machine 
learning classifier that predicts whether students will succeed in 
college. For simplicity, assume we admit students who will succeed.

Gender Age GPA SAT
0 19 3.5 1400
1 18 3.8 1300
1 22 3.3 1500
1 18 3.5 1500
… … … …
0 18 4.0 1600

Succeed
1
0
0
1
…
1



Recap: Disparate Impact

• Let D=(X, Y, C) be a labeled data set, where X = 0 means protected, C = 
1 is the positive class (e.g., admitted), and Y is everything else.
• We say a classifier f has disparate impact (DI) ! (0 < ! < 1) if: 

Pr $(&) = 1 * = 0)
Pr $(&) = 1 * = 1) ≤ !

that is, if the protected class is positively classified less than ! times as 
often as the unprotected class. (legally, ! = 0.8 is common).



Recap: Disparate Impact
• Why this measure?
• Arguably the only good measure if you think the data are biased and 

you have a strong prior belief protected status is uncorrelated with 
outcomes.
• E.g., if you think that the police target minorities, and thus they have 

artificially higher crime rates because your data set isn’t a random sample.
• “In Griggs v. Duke Power Co. [20], the US Supreme Court ruled a 

business hiring decision illegal if it resulted in disparate impact by 
race even if the decision was not explicitly determined based on race. 
The Duke Power Co. was forced to stop using intelligence test scores 
and high school diplomas, qualifications largely correlated with race, 
to make hiring decisions. The Griggs decision gave birth to the legal 
doctrine of disparate impact...” (Feldman et. al, KDD 2015).



Certifying Disparate Impact

• Suppose you don’t know what machine learning algorithms someone 
will use to build a classifier, but you get to see X and Y.

• Can we verify that a classifier on Y will not have disparate impact with 
respect to X?

• Yes! But how? Disparate impact is defined in terms of C (which we 
don’t know), so how can we search for high DI classifiers? 

• Big idea: A classifier learned from Y will not have disparate impact if X
cannot be predicted from Y.

• This is exciting because it means we can check a data set itself for
possible problems, even without knowing the labels.



Certifying Disparate Impact – Definitions 

• Balanced Error Rate: Let !: # → % be a predictor of the protected 
class. Then the balanced error rate is defined as

&'( ! # , % = Pr !(#) = 0 % = 1) + Pr ! # = 1 % = 0)
2

• Predictability: D is 3-predictable if there exists !: # → % with 
&'( ! # , % ≤ 3.



Certifying Disparate Impact – Characterization 

• Theorem. D is (1/2 – B/8)-predictable if and only if it admits a 
classifier with disparate impact 0.8, where B is the fraction of fraction 
of data points with X=0 that are classified as C=1.

• Proof. à Suppose D has disparate impact 0.8. 

• Then D itself gives a function !: # → % that has disparate impact 0.8. 

• The predictor of X from Y is simple: just use f! 
• If f positively classifies an individual, predict they are not in the

protected class, otherwise predict that they are in the protected class. 



Certifying Disparate Impact – Characterization 

!"# $ % , ' = Pr $(%) = 0 ' = 1) + Pr $ % = 1 ' = 0)
2

= 1 − Pr $(%) = 1 ' = 1) + !
2

≤ 1 − Pr $(%) = 1 ' = 0)/0.8 + !
2

= 1
2 −

!
8



Certifying Disparate Impact – Characterization 

•ß Suppose D is (1/2 – B/8)-predictable.
• Then we have a predictor !: # → % with &'( ! # , % ≤ (1/2 – B/8).
• We will classify using f.

+, g Y , C = Pr !(#) = 1 % = 0)
Pr !(#) = 1 % = 1)

= &
& + 1 − 2&'( ! # , %

≤ !
:;
<
= 0.8. □



Certifying Disparate Impact

• Disparate impact related to predictability. So what?
• Given D, we estimate:

1. The predictability (call it !) of D.
2. B, that is, the fraction of the protected class with C=1. 

• This yields an estimate on the possible disparate impact of any 
classifier built on D.
• How do we get these estimates?

1. Use an SVM to predict X from Y while minimizing BER.
2. The empirical estimate from D.

• That’s a lot of estimation! How does it work in practice?





Removing Disparate Impact

• Suppose we find that X and Y do admit of disparate impact. What do 
we do?
• Can we define a “repair” protocol that works the same way, on the

training data itself, without even needing to know the labels?
• We want to change D so that it is no longer predictable. How can we 

do this?
• Formally, given !, # , we want to construct a repaired data set (!, $#)

such that for all &: # → !, )*+ & # , ! > -, where - depends on 
the strength of guarantee we want.



Removing Disparate Impact

• For simplicity, suppose that Y is a single well ordered numerical 
attribute like SAT score.
• Claim. Perfect Repair is always possible.
• Proof. Just set Y to 0 for every individual.

• Recall that !"# $ % , ' = !" #(%)'( )'*)+ !" # % '* )'()
,

• Then on the repaired data, the balanced error rate of any classifier is 
½, which is the maximum possible balanced error rate. □



Removing Disparate Impact

• We would like a smarter way, that preserves the ability to classify 
accurately.

• More specifically, we want to transform Y in a way that preserves 
rankings within the protected group and within the nonprotected 
group (but not necessarily across).

• Ideally, this leads to a smooth transformation that still allows us to 
perform reasonably accurate classification. How?



Removing Disparate Impact

• Algorithm. Let !!" be percentage of agents with protected status x 
whose numerical score is at most y.
• Take a data point (## , %#). Calculate !!'

"'.

• Find %#$% such that !!'()
%$"' = !!'

"'.

• Repair +%# = ,-./01(%# , %#$% ).

• The algorithm is easier to draw than to explain, and once you 
understand it, the proof that it preserves rank and is not predictable 
is obvious.



Removing Disparate Impact



Removing Disparate Impact

• If Y is more than just one attribute, Feldman et. al repair each 
attribute individually.

• The same basic idea can be extended for a partial repair algorithm, 
that still allows some disparate impact, but modifies the data less.

• Of course, preserving rank doesn’t guarantee that the resulting 
dataset can still be used to train good classifiers. Here’s what Feldman 
et. al observe in practice on their experiments.





Disparate Impact – Limitations 

• Typically forbids the “perfect” classifier.
• Allows “laziness.” For example, here is a disparate impact free 

classifier:
• Accept the top 50% (by SAT score) of men who apply
• Accept a random sample of 50% of the women who apply.

• Arguably this is a biased classifier, but it doesn’t have disparate 
impact. 
• It also assumes that there is not a fundamental difference between 

the two groups. If that assumption isn’t true, disparate impact might
not make sense, and could be viewed as “anti-meritocratic.”



Conclusion

• We saw an approach based on differential privacy for providing 
optimal utility subject to individual fairness.
• But this had limitations: in particular, it’s not clear where the distance metric 

on individuals comes from.
• We saw an approach based on the predictability of the sensitive 

attribute for certifying and removing disparate impact - a measure of 
equality of outcomes.
• Next week, we will consider consider a different approach: equality of 

opportunity, rather than outcomes.


