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Outline

• Observational measure of fairness
– Issues with Disparate Impact
– Equal opportunity and Equalized odds
– Positive Rate Parity
– Tradeoff

• Achieving Equalized Odds
– Binary Classifier
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Supervised Learning
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Demographic parity
(or the reverse of disparate impact)
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Demographic parity Issues
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Demographic parity Issues

• Does not seem “fair” to allow random 
performance on A = 0

• Perfect classification is impossible
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A = 0

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔



Perfect Classifier and Fairness

• The perfect classifier may not ensure 
demographic parity
– Y is correlated with A

• What if we did not know how the 
classifier C was created?
– No access to the classifier (to retrain) 
– No access to the training data (human created 

classifier)
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True Positive Parity (TPP) 
(or equal opportunity)

• When positive outcome (1) is desirable
• Equivalently, primary harm is due to false 

negatives
– Deny bail when person will not recidivate
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TPP

• Forces similar performance on Y = 1
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A = 1

A = 0

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔✔



False Positive Parity (FPP)

• TPP + FPP: Equalized Odds, or
Positive Rate Parity

R satisfies equalized odds if 
R is conditionally independent of A given Y. 
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Positive Rate Parity
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✔
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Predictive Value Parity

Equalized chance of success given acceptance
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Predictive Value Parity
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Predictive Value Parity
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Trade-off

• We will look at a similar result later in the 
course due to Kleinberg, Mullainathan 
and Raghavan (2016)

15



Outline

• Observational measure of fairness
– Issues with Disparate Impact
– Equal opportunity and Equalized odds
– Positive Rate Parity
– Tradeoff

• Achieving Equalized Odds
– Binary Classifier
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Equalized Odds

R satisfies equalized odds if 
R is conditionally independent of A given Y. 

• Derived Classifier: A new classifier 𝐶. that 
only depends on C, A (and Y)
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Derived Classifier
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Derived Classifier
• Options for 𝐶.:
– 𝐶. = 𝐶
– 𝐶. = 1	 − 	𝐶
– 𝐶. = 1
– 𝐶. = 0
– Or some randomized 

combination of these
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Derived Classifier
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Summary: Multiple fairness measures

• Demographic parity or disparate impact
– Pro: Used in the law
– Con: Perfect classification is impossible
– Achieved by modifying training data

• Equal Odds/ Opportunity
– Pro: Perfect classification is possible
– Con: Different groups can get rates of positive 

prediction
– Achieved by post processing the classifier

21



Summary: Multiple fairness measures

• Equal odds/opportunity
– Different groups may be treated unequally
– Maybe due to the problem
– Maybe due to bias in the dataset

• While demographic parity seems like a good 
fairness goal for the society, …
Equal odds/opportunity seems to be measuring 
whether an algorithm is fair (independent of 
other factors like input data).
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Summary: Multiple fairness measures

• Fairness through Awareness:
– Need to define a distance function d(x,x’)
– A guarantee at the individual level (rather than on 

groups)
– How does this connect to other notions of fairness?
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