Fairness in ML 2: Equal opportunity and odds

Privacy & Fairness in Data Science CompSci 590.01 Fall 2018

Slides adapted from https://fairmlclass.github.io/4.html

Outline

- Observational measure of fairness
 - Issues with Disparate Impact
 - Equal opportunity and Equalized odds
 - Positive Rate Parity
 - Tradeoff
- Achieving Equalized Odds

 Binary Classifier

Supervised Learning								
	X (features)					A (protected attribute) Y (label)		
	X1	•••	•••	•••	•••	Race	Bail	
	0		0	1		1	Y	
	1		1	0		1	Ν	
	1	•••	1	0	•••	0	Ν	
						•••	•••	

 $\mathbb{P}_a\{E\} = \mathbb{P}\{E \mid A = a\}.$

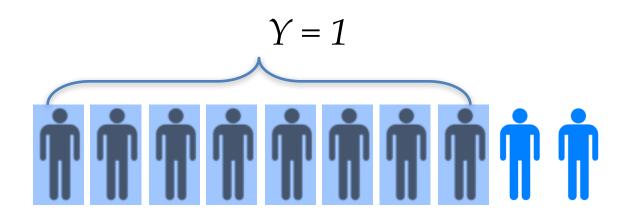
Demographic parity (or the reverse of disparate impact)

Definition. Classifier C satisfies demographic parity if C is independent of A.

When C is binary 0/1-variables, this means $\mathbb{P}_a\{C=1\} = \mathbb{P}_b\{C=1\}$ for all groups a, b.

 $\begin{array}{l} & \text{Approximate versions:} \\ & \frac{\mathbb{P}_a\{C=1\}}{\mathbb{P}_b\{C=1\}} \geq 1 - \epsilon & |\mathbb{P}_a\{C=1\} - \mathbb{P}_b\{C=1\}| \leq \epsilon \end{array}$

Demographic parity Issues

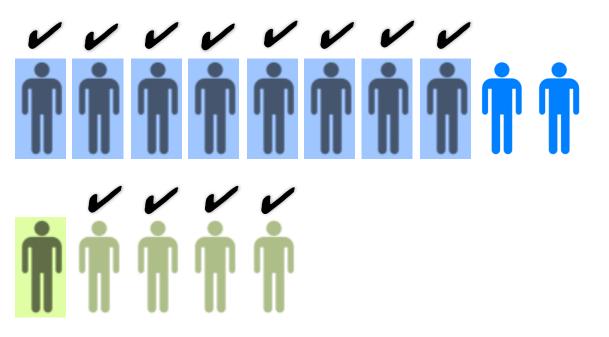


A=1

İİİİİ

A = 0

Demographic parity Issues



A = 1

A = 0

- Does not seem "fair" to allow random performance on A = 0
- Perfect classification is impossible

Perfect Classifier and Fairness

• The perfect classifier may not ensure demographic parity

-Y is correlated with A

- What if we did not know how the classifier C was created?
 - No access to the classifier (to retrain)
 - No access to the training data (human created classifier)

True Positive Parity (TPP) (or equal opportunity)

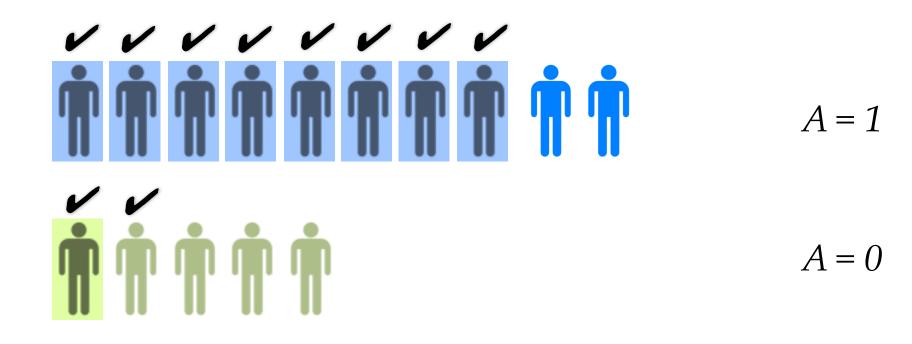
Assume C and Y are binary 0/1-variables.

Definition. Classifier *C* satisfies *true positive parity* if $\mathbb{P}_a\{C = 1 \mid Y = 1\} = \mathbb{P}_b\{C = 1 \mid Y = 1\}$ for all groups *a*, *b*.

- When positive outcome (1) is desirable
- Equivalently, primary harm is due to false negatives

– Deny bail when person will not recidivate

TPP



• Forces similar performance on Y = 1

False Positive Parity (FPP)

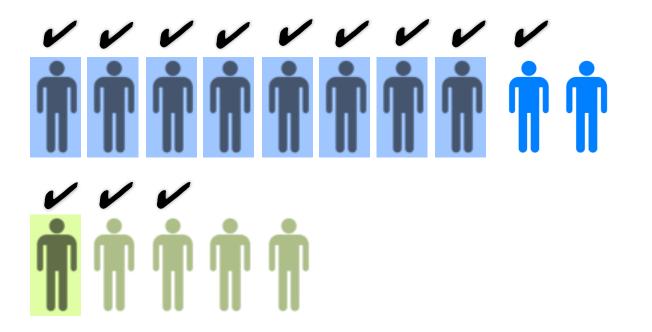
Assume C and Y are binary 0/1-variables.

Definition. Classifier *C* satisfies *false positive parity* if $\mathbb{P}_a\{C = 1 \mid Y = 0\} = \mathbb{P}_b\{C = 1 \mid Y = 0\}$ for all groups *a*, *b*.

• TPP + FPP: Equalized Odds, or Positive Rate Parity

R satisfies equalized odds if *R* is conditionally independent of *A* given *Y*.

Positive Rate Parity



A = 1

A = 0

Predictive Value Parity

Assume *C* and *Y* are binary 0/1-variables.

Definition. Classifier *C* satisfies

- positive predictive value parity if for all groups a, b: $\mathbb{P}_a\{Y = 1 \mid C = 1\} = \mathbb{P}_b\{Y = 1 \mid C = 1\}$
- negative predictive value parity if for all groups a, b: $\mathbb{P}_a\{Y = 1 \mid C = 0\} = \mathbb{P}_b\{Y = 1 \mid C = 0\}$
- predictive value parity if it satisfies both of the above.

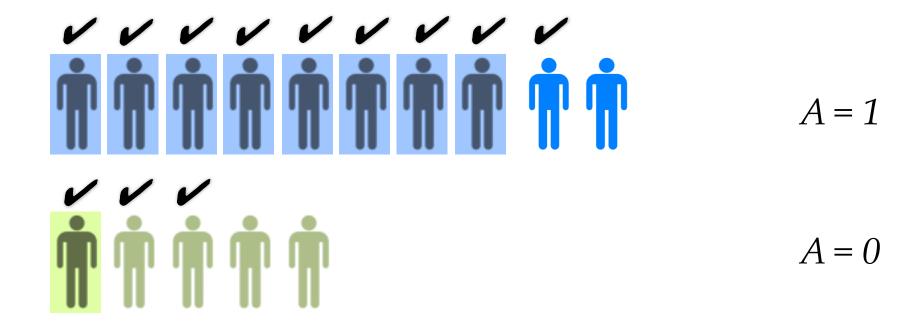
Equalized chance of success given acceptance

$P_1[Y = 1 | C = 1] = P_1[Y = 1 | C = 0] = P_0[Y = 1 | C = 1] = P_0[Y = 1 | C = 0] =$

A = 1 A = 0

Predictive Value Parity

Predictive Value Parity



 $P_1[Y = 1 | C = 1] = 8/9 \qquad P_1[Y = 1 | C = 0] = 0$ $P_0[Y = 1 | C = 1] = 1/3 \qquad P_0[Y = 1 | C = 0] = 0$

Trade-off

Proposition. Assume differing base rates and an imperfect classifier $C \neq Y$. Then, either

- positive rate parity fails, or
- predictive value parity fails.

• We will look at a similar result later in the course due to <u>Kleinberg, Mullainathan</u> and Raghavan (2016)

Outline

- Observational measure of fairness
 - Issues with Disparate Impact
 - Equal opportunity and Equalized odds
 - Positive Rate Parity
 - Tradeoff
- Achieving Equalized Odds

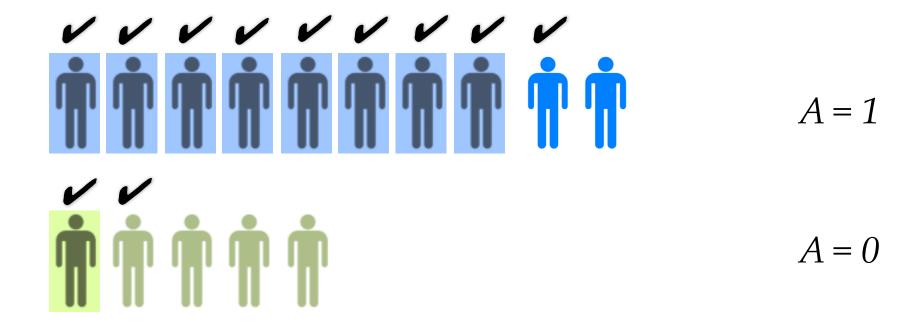
 Binary Classifier

Equalized Odds

R satisfies equalized odds if *R* is conditionally independent of *A* given *Y*.

• *Derived Classifier:* A new classifier \tilde{C} that only depends on *C*, *A* (and *Y*)

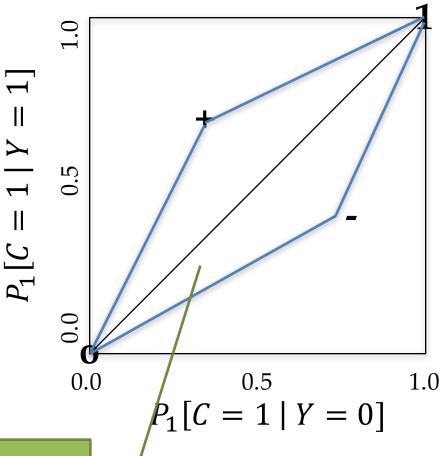
Derived Classifier



$P_1[C = 1 | Y = 0] \neq P_0[C = 1 | Y = 0]$

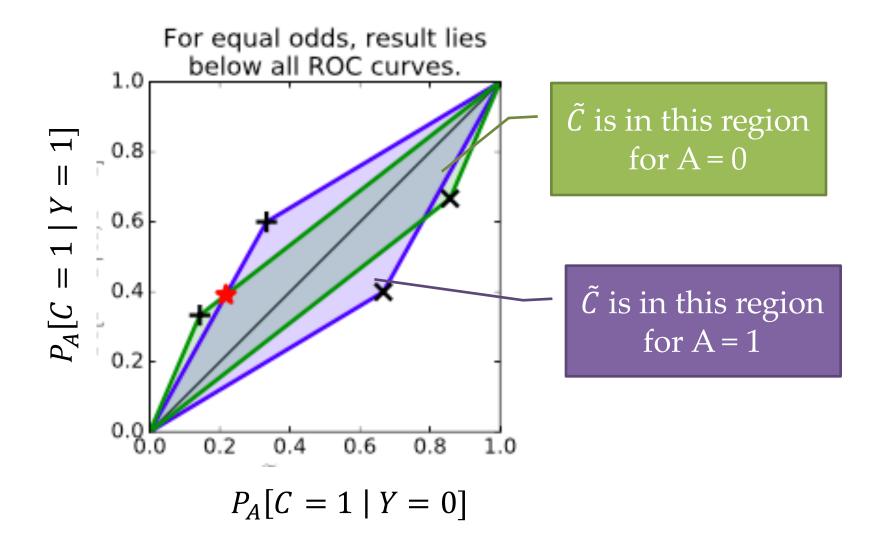
Derived Classifier

- Options for \tilde{C} : - $\tilde{C} = C$
 - $-\tilde{C}=1-C$
 - $-\tilde{C}=1$
 - $-\tilde{C}=0$
 - Or some randomized combination of these



 \tilde{C} is in the enclosed region

Derived Classifier



Summary: Multiple fairness measures

- Demographic parity or disparate impact
 - Pro: Used in the law
 - Con: Perfect classification is impossible
 - Achieved by modifying training data
- Equal Odds/ Opportunity
 - Pro: Perfect classification is possible
 - Con: Different groups can get rates of positive prediction
 - Achieved by post processing the classifier

Summary: Multiple fairness measures

- Equal odds/opportunity
 - Different groups may be treated unequally
 - Maybe due to the problem
 - Maybe due to bias in the dataset
- While demographic parity seems like a good fairness goal for the society, ... Equal odds/opportunity seems to be measuring whether an algorithm is fair (independent of other factors like input data).

Summary: Multiple fairness measures

- Fairness through Awareness:
 - Need to define a distance function d(x,x')
 - A guarantee at the individual level (rather than on groups)
 - How does this connect to other notions of fairness?