
Learning and Approximating
the Optimal Strategy to Commit To∗

Joshua Letchford, Vincent Conitzer, and Kamesh Munagala

Department of Computer Science, Duke University, Durham, NC, USA
{jcl,conitzer,kamesh}@cs.duke.edu

Abstract. Computing optimal Stackelberg strategies in general two-player Bayesian
games (not to be confused with Stackelberg strategies in routing games) is a topic
that has recently been gaining attention, due to their application in various se-
curity and law enforcement scenarios. Earlier results consider the computation
of optimal Stackelberg strategies, given that all the payoffs and the prior dis-
tribution over types are known. We extend these results in two different ways.
First, we considerlearning optimal Stackelberg strategies. Our results here are
mostly positive. Second, we consider computingapproximatelyoptimal Stackel-
berg strategies. Our results here are mostly negative.

1 Introduction

Game theory defines solution concepts for strategic situations, in which multiple self-
interested agents interact in the same environment. Perhaps the best-known solution
concept is that ofNash equilibrium[11]. A Nash equilibrium prescribes a strategy for
every player, in such a way that no individual player has an incentive to change her
strategy. If strategies are allowed to be mixed—a mixed strategy is a probability distri-
bution over pure strategies—then it is known that every finite game has at least one Nash
equilibrium. Some games have more than one equilibrium, leading to theequilibrium
selection problem.

Perhaps the most basic representation of a game is thenormal form. In the normal-
form representation, every player’s pure strategies are explicitly listed, and for every
combination of pure strategies, every player’s utility is explicitly listed.

The problem ofcomputingNash equilibria of a normal-form game has received
a large amount of attention in recent years. Finding a Nash equilibrium is PPAD-
complete [6, 1]. Finding an optimal equilibrium (for just about any reasonable definition
of “optimal”—for instance, maximizing the sum of the players’ utilities) is NP-hard [7,
3]; moreover, it is not even possible to find an equilibrium that is approximately optimal
in polynomial time, unless P=NP [3]. This holds even for two-player games.

However, Nash equilibrium is not always the right solution concept. In some set-
tings, one player can credibly commit to a strategy, and communicate this to the other
player, before the other player can make a decision. To see how this can affect the

∗Some of these results were briefly presented as part of a talk at the 2009 Bellairs Workshop
on Algorithmic Game Theory. This work is funded by: Alfred P.Sloan Research Fellowships,
NSF Grant IIS-0812113, NSF Career Award 0745761 and Grant CNS-0540347.

outcome of a game, consider the following simple normal-form game (which has pre-
viously been used as an example for this,e.g., [2]):

L R

U (2,1)(4,0)
D (1,0)(3,1)

Fig. 1. A sample game and its extensive form representation

For the case where the players move simultaneously (no ability to commit), the
unique Nash equilibrium is(U, L): U strictly dominatesD, so that the game is solvable
by iterated strict dominance. So, player 1 (the row player) receives utility2. However,
now suppose that player 1 has the ability to commit. Then, sheis better off committing
to playD, which will incentivize player 2 to playR, resulting in a utility of3 for player
1. The situation gets even better for player 1 if she can commit to a mixed strategy: in
this case, she can commit to the mixed strategy(.5 − ε, .5 + ε), which still incentivizes
player 2 to playR, but now player 1 receives an expected utility of3.5 − ε. To ensure
the existence of optimal strategies, we assume (as is commonly done [2, 12]) that player
2 breaks ties in player 1’s favor, so that the optimal strategy for player 1 to commit to
is (.5, .5), resulting in a utility of3.5. (Note that there is never a reason for player 2
to randomize, since he effectively faces a single-agent decision problem.) An optimal
strategy to commit to is usually called aStackelbergstrategy, after von Stackelberg, who
showed that in Cournot’s duopoly model [4], a firm that can commit to a production
quantity has a strategic advantage [15]. Throughout this paper, a Stackelberg strategy is
an optimalmixedstrategy to commit to; we will only consider two-player games. In this
context, the Stackelberg leader’s expected utility is always at least the expected utility
that she would receive in any Nash (or even correlated) equilibrium of the simultaneous-
move game [16]. In contrast, committing to a pure strategy isnot always beneficial; for
example, consider matching pennies.

One may argue that the normal form is not the correct representation for this game.
In game theory, the time structure of games is usually represented by theextensive form.
Indeed, the above game can be represented as the extensive-form game in Figure 1.
While this is a conceptually useful representation, from a computational perspective it is
not helpful: player 1 has an infinite number of strategies, hence (the naı̈ve representation
of) the tree has infinite size. It should be emphasized that committing to a mixed strategy
is not the same as randomizing over which pure strategy to commit to; in fact, there is
no reason to randomize over which strategy to commit to. Thus, from a computational
viewpoint, it makes more sense to operate directly on the normal form.

The problem of computing Stackelberg strategies in generalnormal-form (or, more
generally, Bayesian) games has only recently started to receive attention. A 2006 EC pa-
per by Conitzer and Sandholm [2] layed out the basic complexity results for this setting:
Stackelberg strategies can be computed in polynomial time for two-player general-sum

normal-form games using linear programming (in contrast tothe problem of finding
a Nash equilibrium), but computing Stackelberg strategiesis NP-hard for two-player
Bayesian games or three-player normal-form games. Undeterred by the NP-hardness
result, Paruchuriet al. [12] developed a mixed-integer program for finding an (optimal)
Stackelberg strategy in the two-player Bayesian case (the setting that we study in this
paper). They show that using this formulation is much fasterthan converting the game
to normal form (leading to an exponential increase in size) and then using the linear
programming approach. Moreover, this algorithm forms the basis for their deployed
ARMOR system, which is used at the Los Angeles InternationalAirport to randomly
place checkpoints on roads entering the airport, as well as to decide on canine patrol
routes [9, 13]. The use of commitment in similar games dates back much further, in-
cluding, for example, applications to inspection games [10]. The formal properties of
various types of commitment are also studied in [8].

It should be noted that Stackelberg strategies are a generalization of minimax strate-
gies in two-player zero-sum games. Because computing minimax strategies is equiva-
lent to linear programming [5], this also implies that a linear programming solution
for computing Stackelberg strategies is the best that we canhope for. Of course, Nash
equilibrium is an alternative generalization of minimax strategies. Stackelberg strate-
gies have the significant advantage that they avoid the equilibrium selection problem:
there is an optimal value of the game for the leader (player 1), which in general cor-
responds to a single optimal strategy (though not in degenerate cases). The notion of
“Stackelberg strategies” has appeared in other contexts inthe algorithmic game theory
literature, specifically, in the context of routing games, where a single benevolent party
controls part of the flow, and commits to routing this flow in a manner that minimizes
total latency [14]. While interesting, that paper does not seem that closely related to our
work, because in our context, the leader is a selfish player inan arbitrary game.

The rest of this paper is layed out as follows. In Section 2, weformally review the
necessary concepts, introduce our notation, and discuss existing results that are relevant.
In Section 3—the first half of our contribution—we prove several results aboutlearning
Stackelberg strategies, in contexts where the follower payoffs and/or the distribution
over types is not known initially. In Section 4—the second half of our contribution—
we consider purely computational problems and give (in)approximability results.

2 Preliminaries

In this section, we review notation and existing results.

2.1 Notation and definitions

We will refer to player 1 as theleaderand to player 2 as thefollower. Let Al be the
set of leader actions in the game (|Al| = d), and letAf be the set of follower actions
(|Af | = k). The leader’s utility is given by a functionul : Al × Af → R. When we
are studying approximability, we (wlog) require all the leader utilities to be nonnegative
(to make multiplicative approximation meaningful). In a Bayesian game, the follower
has a set oftypesΘ (|Θ| = τ), which, together with the actions taken, determine his
utility, according to a functionuf : Θ × Al × Af → R. For simplicity, we will not

consider situations where the leader’s utility also depends on the follower’s type; this
restriction strengthens our hardness results. We will refer to these asBayesiangames; a
normal-formgame is the special case where there is only a single type.

σ denotes a mixed strategy for the leader, andσ(al) the probability thatσ places on
actional. Let BR(θ, σ) ∈ Af denote the action that the follower plays (that is, his best
response, with ties broken in favor of the leader) when his type isθ and the leader has
committed to playingσ. We note that

BR(θ, σ) ∈ arg max
af∈Af

∑

al∈Al

σ(al)uf(θ, al, af)

The BR function also captures the fact that the follower breaks ties in the leader’s favor.
Given the follower typeθ, the leader’s expected utility is

∑

al∈Al

σ(al)ul(al, BR(θ, σ))

Given a prior probability distributionP : Θ → [0, 1] over follower types, the leader’s
expected utility for committing toσ is

∑

θ∈Θ

P (θ)
∑

al∈Al

σ(al)ul(al, BR(θ, σ))

When we take a worst-case perspective, we will be interestedin a setting with types but
without a prior distribution over them (also known as apre-Bayesiangame).

2.2 Known results and techniques

In this subsection we review the most relevant prior work. For a normal-form game,
the optimal mixed leader strategy can be computed in polynomial time, as follows:1 for
every follower actionaf , the following linear program (whose variables are theσ(al))
can be used to determine the best leader strategy that makes the follower playaf :

maximize
∑

al
σ(al)ul(al, af)

subject to
(∀a′

f)
∑

al
σ(al)uf (al, af) ≥

∑

al
σ(al)uf (al, a

′
f)

∑

al
σ(al) = 1

(∀al) σ(al) ≥ 0

Some of these linear programs may be infeasible (it is impossible to make a follower
play a strictly dominated strategy), but some will be feasible; the solution of the one
with the highest objective value gives the optimal mixed strategy for the leader.

For Bayesian games (with a prior), the problem of computing the optimal mixed
leader strategy is known to be NP-hard [2]. However, this strategy can be found using a
mixed integer program [12].

1This algorithm was presented in [2]. Some of the analysis in [16] is based on similar insights.

2.3 Visualization

In this subsection, we show how the problems we discussed above can be visualized. Let
us consider the normal-form case. The space of possible strategies for the leader defines
a unit simplex ind − 1 dimensions, whered is the number of leader actions. For each
strategy of the leader, the follower has a best response. Thespace of leader strategies
for which the follower’s best response isaf defines a (possibly empty) polyhedron.
Therefore, thed-simplex splits into at mostk (number of follower actions) polyhedral
regions, based on the follower utility function. Each of these regions corresponds to the
feasible region of one of the linear programs, and the objective of that linear program
can be represented as an arrow in the region.

Let us consider the following small example and its visualization.

L C R

U (0,1)(1,0)(0,0)
M (4,0)(0,1)(0,0)
D (0,0)(1,0)(1,1)

Fig. 2. A small game and its visualization

Each dot in Figure 2 represents the optimal point (leader mixed strategy) within
each region (which lie onseparating hyperplanesor on the boundary); the largest dot
(.5,.5,0) shows the optimal point overall.

The Bayesian case can be visualized in (at least) two different ways. A simple way
is to have a separate unit simplex for every type; this does not require a prior distribution
over types (that is, it works for pre-Bayesian games). If there is a prior distribution over
types, another way is to have a region for each element of the set of all pure strategies
for the follower, so that(aθ1

f , . . . , aθτ

f) corresponds to the region where typeθ1’s best

response isaθ1

f , typeθ2’s best response isaθ2

f , etc.The arrows in this region represent
the objective, which depends on the prior. This representation does not work for pre-
Bayesian games where we take a worst-case perspective, because the optimal point may
be in the interior of a region.

3 Learning Stackelberg strategies

If a game is repeated over time, this opens up the possibilityfor the leader to learn
something about the follower’s utilities or the distribution over types. To avoid the pos-
sibility that the follower tries to mislead the leader over time, we imagine that a new
follower agent is drawn in every round. Alternatively, the follower can be assumed to
behave myopically. In a round, the leader commits to a mixed strategy, and subsequently
observes the follower’s response. The leader’s goal is to learn enough to determine the
optimal Stackelberg strategy, in as few rounds (samples) as possible.

Due to space constraint, we focus on the case with a single type: that is, in each
round, the follower has the same payoff matrix, given byuf (al, af), initially unknown
to the leader. In each round, the leader commits to a mixed strategyσ and learns the

follower’s response. We say that the leaderqueriesor samplesthe pointσ on the prob-
ability simplex. The goal is to minimize the number of samples necessary to find the
optimal (Stackelberg) mixed strategy for the leader. In Appendices B and C we con-
sider two other cases with more than one type, one where the leader needs to learn the
follower payoff function, and one where this function is known, but the leader must
discover the distribution over types. We make the followingassumptions:

– The follower utilities are non-degenerate; no separating hyperplanes coincide.
– We will only consider regions whose volume is at least some fractionε > 0 of the

total volume, and try to find the optimal solution among points in these regions. (It
can be argued that solutions in smaller regions are too unstable. Alternatively, we
can simply assume that every nonempty region has at least this volume.)

– We assume that the optimal solution can be specified exactly using a limited amount
of precision quantified byL. This allows us to bound the number of iterations of
binary search needed to calculate these hyperplanes exactly, to a linear multiple of
L.

Our approach will be to learn all the regions (whose volume isat leastε of the
total)—that is, find all hyperplanes separating these regions. Once we know these, the
optimal strategy can be computed using the linear programming approach above.

A high-level outline of our algorithm SU is as follows. For each follower action
af ∈ Af , the algorithm maintains an overestimatePaf

of the region whereaf is a best
response. It then refines these overestimates via sampling,until they are disjoint.
SU

1. For eachaf ∈ Af , find a point (leader strategy)qaf
in thed-simplex to whichaf

is a best response (provided the corresponding region is sufficiently large).
2. Initially, eachPaf

is the entired-simplex.
3. Repeat the following until allPaf

are disjoint:
(a) Find a pointp∗ in the intersection of somePa′

f
andPa′′

f
.

(b) Sample to obtain the optimal follower strategy atp∗; call it a∗
f .

(c) Draw a line segment betweenp∗ and someqaf
for af 6= a∗

f , af ∈ {a′
f , a′′

f};
perform binary search on this line to find a single point on a hyperplane that
we have not yet discovered.

(d) Find a set ofd linearly independent points on the hyperplane, and hence re-
construct it.

(e) Update thePaf
to take this new hyperplane into account.

We now describe the steps of SU in detail.
Step (1).Finding a point in each region (with at leastε of the volume) can be achieved
via random sampling, via the following lemma.

Lemma 1. It takesO(Fk log k) samples to w.h.p. (with high probability) find a single
point in each sufficiently large region, whereF = 1/ε.

Proof. The probability that a randomly chosen point corresponds tofollower actionaf

is at leastε. Therefore, for any constant integerc ≥ 1, after((c + 1)F log k) samples,

the probability that follower actionaf is not hit is at most(1
k
)c+1. By a union bound,

the probability that at least one action is not hit is at most(1
k
)c.

Fig. 3. Finding a hyperplane.

Step (3 a–c).Consider two overestimatesPa′

f
andPa′′

f
that have nonzero overlap vol-

ume. By Step (1), we may assume that we have sampled a pointqa′

f
that led to a re-

sponse ofa′
f (that is,qa′

f
is in the region corresponding toa′

f), and a pointqa′′

f
that led

to a response ofa′′
f . Both of these overestimates are characterized by setsH ′ andH ′′

of hyperplanes that we have previously discovered. We need to discover a new hyper-
plane. It will not suffice to do binary search on the line segment between the two starting
points, as illustrated by Figure 3, which illustrates a situation where we have discovered
two of the hyperplanes of Figure 2. If we do binary search on the line segment between
the two indicated points, we cannot discover the missing hyperplane, because the top
region “gets in the way” (another action, namelyC, will start being the best response).
However, if we sample from the shaded setPL ∩ PR, the result will be different from
one of the two points; then, by performing binary search on the line segment between
this point and the new point, we will find a point on a new hyperplane. The follow-
ing algorithm formalizes this idea. In it, we do not assume that the two overestimates
overlap.
FIND POINT

1. Solve a linear program to find an interior pointp∗ of Pa′

f
∩ Pa′′

f
given the con-

straintsH ′ ∪ H ′′. (If this is not feasible, return failure.)
2. Sample this point and let the follower strategy returned bea∗

f .
(a) If a∗

f = a′
f , search the line segment betweenp∗ and qa′′

f
for a point on a

hyperplane that has the region corresponding toa′′
f adjacent on one side, via

binary search.
(b) Otherwise, search the line segment betweenp∗ andqa′

f
for a point on a hyper-

plane that has the region corresponding toa′
f adjacent on one side, via binary

search.

Lemma 2. Given overestimatesPa′

f
andPa′′

f
on the regions corresponding toa′

f and
a′′

f , and pointsqa′

f
andqa′′

f
in these respective regions,FIND POINT will either give a

point on a new hyperplane for one of the regionsPa′

f
or Pa′′

f
, or will return that Pa′

f

andPa′′

f
already have zero intersection volume. This requiresO(L) samples.

The detailed proof is in Appendix A.
Step (3d).In this step, the input is a pointp on the hyperplane that we need to recon-
struct, and the two follower actionsa′

f anda′′
f that correspond to the regions separated

by this hyperplane. The following DETERMINE HYPERPLANEfinds the hyperplane.

DETERMINE HYPERPLANE

1. Sample the vertices of a regulard-simplex with sides of lengthε′ � ε, centered at
p. (Draw this simplex uniformly at random among such simplices.)

2. Organize the vertices of this simplex into two sets,V ′ andV ′′ according to the
region they fall in. (Both of these sets will be nonempty.)

3. Choosed distinct pairs of points where one of the points is inV ′ and the other is
in V ′′

4. Binary-search thed line segments formed by these pairs, to find the points where
these line segments intersect the hyperplane.

Lemma 3. DETERMINE HYPERPLANE will give d linearly independent points on the
hyperplane usingO(dL) samples.

Proof. First, consider thed + 1 vertices of thed-simplex centered atp. Sinceε′ is
sufficiently small, all of the points fall into one of the two regions (and since the simplex
is chosen at random, there is zero probability of one of the vertices being exactly on the
hyperplane). Since the hyperplane goes throughp, at least one of the vertices of the
simplex will fall into each region. As a result, there are at leastd line segments between
vertices of the simplex where the two vertices of the segmentproduce different follower
actions. Finally, the points where the hyperplane intersects with these line segments
must be linearly independent; otherwise, the simplex wouldnot be full-dimensional.
Furthermore, the number of samples needed to find the hyperplane-intersecting point
on a line segment via binary search is linear inL. This completes the proof.

With these tools, we can give our main result for this problem:

Theorem 1. To find, w.h.p., all the hyperplanes that separate regions, SU requires
O(Fk log k + dk2L)) samples, whereF = 1/ε, ε is the smallest volume of regions
that we consider,L is the precision, andk = |Af |. Computationally, this requires the
solution ofO(k2) linear programs.

Details of the proof are in Appendix A. Once we have generatedall the hyperplanes
that separate regions, we can use the known linear programming approach described in
Subsection 2.2 to find the optimal mixed strategy to commit to.

4 Computing Stackelberg strategies
In this section, we consider how different modeling assumptions affect the computa-
tional tractability and approximability of the Stackelberg problem with multiple fol-
lower types. Unlike the previous section, this section doesnot consider learning prob-
lems at all: it focuses strictly on the computational aspects of the optimization. Because
of this, we only consider a single-round setting in this section.

The following aspects of the model will remain the same throughout this section.

– We consider two-player, general-sum games that have more than one follower type.
– The leader’s utility does not dependdirectly on the follower’s type (but it does

depend on the follower’s action, which can be affected by thefollower’s type).
– The follower’s utility functionuf (θ, al, af) is common knowledge.

We consider two modeling decisions. The first decision concerns whether the type
space is discrete or continuous. For the discrete case, we assume that we have a finite
number of types, which are explicitly listed. For the continuous case, we assume that
the space of possible types is defined by a lower bound and an upper bound for the
follower’s utility for each action profile(al, af); every follower payoff matrix that is
consistent with these bounds corresponds to some type.

The second modeling decision is whether the follower type ischosen according to a
Bayesian model or an adversarial (worst-case) model. Note that the “adversary” isnot
one of the players of the game, in particular, the adversary and the follower are different.

4.1 Computing Bayesian optimal strategies with finitely many types
In this subsection we study how to compute the optimal mixed strategy when the fol-
lower’s type is drawn from a known distribution over finitelymany types. We refer to
this problem asBayesian optimization for finite types (BOFT). BOFT is defined as:

– We have a setΘ of possible follower types,|Θ| = τ .
– The follower’s utility functionuf (θ, al, af) is common knowledge.
– Both the follower’s utility functionuf (θ, al, af) and the leader’s utility function

uf (θ, al, af) are normalized to lie in [0,1] for all inputs.
– The prior over follower typesP (θ) is common knowledge.
– An optimal leader strategy is one that maximizes the leader’s expected utility.

This problem was first studied in [2], where it was shown to be NP-hard. It also
forms the basis for much of the applied work on computing Stackelberg strategies [9].
However, to the best of our knowledge, the approximability of this problem has not yet
been studied. We settle the approximability precisely in this subsection.

Theorem 2. For all constantε > 0, no polynomial-time factor-τ1−ε approximation
exists for BOFT unless NP= P, even if there are only two follower actions.

This hardness of approximation can be shown by a reduction from MAX-INDEPENDENT-
SET. In this reduction, vertices correspond to types, and the leader cannot incentivize
two adjacent types to both play a desirable action. The full reduction appears in Ap-
pendix D.

Theorem 3. There is a polynomial-time factor-τ approximation algorithm for BOFT.

A simple algorithm that achieves this is the following: choose a type uniformly at
random, and solve for the optimal mixed strategy to commit tofor this specific type
(using the linear programming approach). With probability1/τ , we choose the type
that is actually realized, in which case we perform at least as well as the optimal overall
strategy. Hence, this guarantees at least aτ approximation. Details and derandomization
appear in Appendix D.

4.2 Computing worst-case optimal strategies with finitely many types

A prior distribution over follower types is not always readily available. In that case, we
may wish to optimize for the worst-case type (equivalently,the worst-case distribution
over types). We note that the worst-case type depends on the mixed strategy that we
choose, so that this is not the same problem as optimizing against a single type. We
refer to this problem asworst-case optimization for finite types (WOFT):

– We have a setΘ of possible follower types,|Θ| = τ .
– The follower’s utility functionuf (θ, al, af) is common knowledge.
– An optimal leader strategy is one that maximizes the worst-case expected utility

for the leader, where the worst case is taken over follower types (but we are taking
the expectation over the mixed strategy). That is, an adversary (not equal to the
follower) chooses the follower type after the leader mixed strategy is chosen, but
before the pure-strategy realization.

It turns out that WOFT is even less approximable than BOFT.

Theorem 4. WOFT is completely inapproximable in polynomial time, unless P=NP
(that is, it is hard to distinguish between instances where the leader can get at least1 in
the worst case, and instances where the leader can only get0)—even if there are only
four follower actions.

This can be shown by a reduction from 3-SAT. In the resulting game, the leader can
obtain an expected utility of1 against every type if the 3-SAT instance is satisfiable,
and otherwise will obtain utility0 against some type. The full reduction appears in
Appendix D.

4.3 Optimizing for the worst type with ranges

So far, we have assumed that the space of possible types is represented by explicitly
listing the (finitely many) types and the corresponding utilities. However, this repre-
sentation of the uncertainty that the leader has over the follower’s preferences is not
always convenient. For example, the leader may have a rough idea of every follower
payoff, which could be represented by a range in which that payoff must lie. This cor-
responds to a continuous type space for the follower: every setting of all the follower
payoffs within the ranges corresponds to a type.

In this subsection, we study the problem of maximizing the leader’s worst-case
utility over all types (instantiations of the follower payoffs within the ranges). Later in
the subsection, we also consider a generalization where thefollower payoffs in different
entries can be linked to each other.

For example, consider the following game with ranges:

L R
U 0, [1,2] 1, 0
D 1,0 0, [1,2]

The leader is unsure about the follower’s utility for(U, L) and(D, R), each of which is
known to lie somewhere in the range[1, 2] (they can vary independently). The follower
knows his utilities. If the leader places less than1/3 probability onU , then the follower
is guaranteed to playR; this results in a utility of at most1/3 for the leader. If the leader

places more than2/3 probability onU , then the follower is guaranteed to playL; this
results in a utility of at most1/3 for the leader. If the leader places probability between
1/3 and2/3 on U , then the follower may end up playing eitherL or R; by placing
probability1/2 onU , the leader obtains an expected utility of1/2, which is optimal.

We refer to this problem asworst-case optimization for range types (WORT):

– For every(al, af), the leader has a range in which the follower utility might lie,
uf (al, af) ∈ [ul

f (al, af), uh
f (al, af)]. The leader knows her own utilitiesul(al, af).

– An optimal leader strategy is one that maximizes the worst-case expected utility for
the leader, where the worst-case values of

Theorem 5. WORT is NP-hard.

This follows from a reduction from 3-COVER, which is presented in Appendix D. It is
an open question whether WORT can be efficiently approximated. In Appendix E, we
define a generalization of WORT, which we prove is inapproximable unlessP = NP .
This generalization allows the follower’s payoffs to be linked across entries.

5 Conclusion
Computing optimal Stackelberg strategies in general two-player Bayesian games is a
topic that has been gaining attention in recent years, due totheir application in both se-
curity and law enforcement. Earlier results consider the computation of optimal Stack-
elberg strategies, given that all the payoffs and the prior distribution over types are
known. We extended these results in two ways.

First, we consideredlearningoptimal Stackelberg strategies. We first considered the
normal-form case where the follower payoffs are not known and showed how we can
efficiently learn enough about the payoffs to determine the optimal strategy. We then
extended this to Bayesian games. We also considered the casewhere the payoffs are
known, but the distribution over types is not. We showed how we can efficiently learn
enough about the distribution to determine the optimal strategy. It must be admitted that
it is debatable whether this framework for learning is practical for current real-world se-
curity applications, since the costs incurred during the learning phase may be too high;
however, these costs may be more manageable in electronic commerce applications.

Second, we considered computingapproximatelyoptimal Stackelberg strategies.
Our results here were mostly negative: we showed that the best possible approximation
ratio that can be obtained in polynomial time for the standard Bayesian problem isτ ,
the number of types, unless NP = P. Optimizing for the worst type is completely inap-
proximable in polynomial time, in the sense that we cannot distinguish instances where
we can guarantee utility1 from instances where it is impossible to guarantee positive
utility, unless P=NP. We also studied a different representation of uncertainty about the
follower’s payoffs that relies on ranges, and showed that optimizing for the worst case
is NP-hard in the basic setting, and completely inapproximable in a generalized setting
where the payoffs are linked. These negative results provide some justification for the
use of worst-case exponential-time algorithms in this context, such as those that use
mixed integer programming.

Two immediate directions for future research are: (1) investigating the approx-
imability of the basic ranges problem, and (2) considering the ranges problem in the

Bayesian case (rather than the worst case). There are many other directions for future
research, for example, studying the number of samples required to learnapproximately
optimal strategies, investigating the case where there aremore than two players, and/or
computing optimal Stackelberg strategies when the normal form has exponential size,
but the game is concisely represented.

References

1. Xi Chen and Xiaotie Deng. Settling the complexity of two-player Nash equilibrium. In
FOCS, pages 261–272, 2006.

2. Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit to. In
Proceedings of the ACM Conference of EC, pages 82–90, Ann Arbor, MI, USA, 2006.

3. Vincent Conitzer and Tuomas Sandholm. New complexity results about Nash equilibria.
Games and Economic Behavior, 63(2):621–641, 2008.

4. Antoine Augustin Cournot.Recherches sur les principes mathématiques de la théoriedes
richesses (Researches into the Mathematical Principles ofthe Theory of Wealth), 1838.

5. George Dantzig. A proof of the equivalence of the programming problem and the game
problem. In Tjalling Koopmans, editor,Activity Analysis of Production and Allocation, pages
330–335. John Wiley & Sons, 1951.

6. Constantinos Daskalakis, Paul Goldberg, and Christos H.Papadimitriou. The complexity of
computing a Nash equilibrium. InSTOC, pages 71–78, 2006.

7. Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: Some complexity consider-
ations.Games and Economic Behavior, 1:80–93, 1989.

8. Paul Harrenstein, Felix Brandt, and Felix Fischer. Commitment and extortion. InProceed-
ings of AAMAS, Honolulu, HI, USA, 2007.

9. Manish Jain, James Pita, Milind Tambe, Fernando Ordóñez, Praveen Paruchuri, and Sarit
Kraus. Bayesian Stackelberg games and their application for security at Los Angeles inter-
national airport.SIGecom Exch., 7(2):1–3, 2008.

10. Michael Maschler. A price leadership method for solvingthe inspector’s non-constant-sum
game.Naval Research Logistics Quarterly, 13(1):11–33, 1966.

11. John Nash. Equilibrium points in n-person games.Proceedings of the National Academy of
Sciences, 36:48–49, 1950.

12. Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki,Milind Tambe, Fernando Ordóñez,
and Sarit Kraus. Playing games for security: an efficient exact algorithm for solving Bayesian
Stackelberg games. InProceedings of AAMAS, pages 895–902, Estoril, Portugal, 2008.

13. James Pita, Manish Jain, Fernando Ordóñez, Christopher Portway, Milind Tambe, and Craig
Western. Using game theory for Los Angeles airport security. AI Mag., 30(1):43–57, 2009.

14. Tim Roughgarden. Stackelberg scheduling strategies. In STOC, pages 104–113, New York,
NY, USA, 2001. ACM.

15. Heinrich von Stackelberg.Marktform und Gleichgewicht. Springer, Vienna, 1934.
16. Bernhard von Stengel and Shmuel Zamir. Leadership with commitment to mixed strategies.

Research Report LSE-CDAM-2004-01, London School of Economics, February 2004.
17. David Zuckerman. Linear degree extractors and the inapproximability of max clique and

chromatic number.Theory of Computing, 3(1):103–128, 2007.

APPENDIX

A Omitted proofs from Section 3

Lemma 2. Given overestimatesPa′

f
andPa′′

f
on the regions corresponding toa′

f and
a′′

f , and pointsqa′

f
andqa′′

f
in these respective regions,FIND POINT will either give a

point on a new hyperplane for one of the regionsPa′

f
or Pa′′

f
, or will return that Pa′

f

andPa′′

f
already have zero intersection volume. This requires at most O(L) samples.

Proof. If no interior point is found, then the intersection volume must be zero. Now
consider the more interesting case when a pointp∗ is found. Leta∗

f be the follower
action produced by this point. There are three possibilities: eithera∗

f = a′
f , a∗

f = a′′
f , or

a∗
f is not equal to either. Let us consider the first case, wherea∗

f = a′
f . If we consider

the line segment betweenp∗ andqa′′

f
, it is clear that this line segment will intersect with

a currently unknown hyperplane for regiona′′
f . This is because we know that such a

hyperplane exists, asa′′
f is preferred at pointqa′′

f
and it is not at pointp∗. We know that

this hyperplane was previously unknown, because when we determinedp∗, we made
sure thatp∗ ∈ Pa′′

f
. We can find the point of intersection with binary search, using

O(L) samples. The same argument holds true for the other two cases, using the point
qa′

f
instead ofqa′′

f
.

Theorem 1. To find, w.h.p., all the hyperplanes that separate regions, SU requires
O(Fk log k + dk2L)) samples, whereF = 1/ε, ε is the smallest volume of regions
that we consider,L is the precision, andk = |Af |. Computationally, this requires the
solution ofO(k2) linear programs.

Proof. The first step in SU is to find one point in each region (with sufficient volume).
This can be handled by random sampling, as shown by Lemma 1. After we have gener-
ated one point in each region, sort the regions by their corresponding follower actions
{a1

f , a2
f ...ak′

f }, wherek′ ≤ k.
Next, we iterate over all pairs of regions, that is, we iterate over all pairsa′

f and

a′′
f ∈ {a1

f , a2
f ...ak′

f }, wherea′
f 6= a′′

f . We run FIND POINT on a′
f anda′′

f . If it returns
failure, we move on to the next pair of regions. If FIND POINT does find a point, we
run DETERMINE HYPERPLANE to find a new hyperplane, after which we update the
overestimates.

Since we know that thed-simplex of all leader strategies is composed of at mostk
convex regions, there are at most

(

k
2

)

separating hyperplanes (as each region can share
at most one hyperplane with each other region). It takesO(L) samples per hyperplane
to find a single point on it with FIND POINT, according to Lemma 2. It then takes an
additionalO(dL) samples to findd linearly independent points, according to Lemma 3.
Thus, we requireO(dL) samples per hyperplane, orO(k2dL) total samples to find all
of the hyperplanes. This is in addition to theO(Fk log k) samples necessary to find
points in the regions with sufficiently high volume, according to Lemma 1.

Computationally, we need to run at most
(

k
2

)

linear programs that find a valid start-
ing point to determine a hyperplane, since there are at most

(

k
2

)

hyperplanes. In addition,

we need to run at most
(

k
2

)

linear programs that fail to find a feasible point, because once
we fail to find a feasible point we need never try that pair of follower actions again. This
gives us a bound ofO(k2) on the number of linear programs.

B Multiple types/unknown payoffs

In this subsection, we extend the work of Section 3 to the Bayesian case, where there
is a setΘ of opponent types (|Θ| = τ), and the follower’s payoff function remains
unknown.

First, let us consider a simplified version of this problem, where a sample tells us
whateverytype would play for this mixed strategy, instead of what a single type would
play. We call such a powerful sample acomplete sample.

Lemma 4. The leader can find all the necessary hyperplanes usingO(τ(kF log(k) +
dk2L))) complete samples.

Proof. Number the typesθ1, θ2, ..., θτ . We simply run the SU algorithmτ times, first
for θ1, etc. In each case, we ignore all the information except for the type we are
currently considering. In the end, we will know all the hyperplanes for each type.
O(Fk log(k) + dk2L)) samples are sufficient to solve the problem with a single type,
which gives us the desired bound.

Now let us consider the original problem where in a single sample, we only obtain
a typeθ drawn according to the distribution, and the action played by that type. We can
use the algorithm from Lemma 4 by sampling the same point sufficiently often, so that
we obtain a complete sample with all the types—in fact, we only need the type that the
algorithm is currently considering.

Theorem 6. To find all of the hyperplanes requires
O(P (θ′)−1τ(Fk log(k) + dk2L) log(τ(Fk log(k) + dk2L)) samples for a constant
chance of success, whereθ′ = argmin

θ∈Θ

P (θ)

Proof. First, letz = Fk log(k)+dk2L. Assume that we sample at each point(P (θ′)−1)∗
ln(zτ + 1) times. Since we fail a sample with probability(1 − P (θ′)), we can up-
per bound the chance of failing(P (θ′)−1) ∗ ln(zτ + 1) consecutive times as((1 −

1
P (θ′)−1)P (θ′)−1))ln(zτ+1) < (1

e
)ln(zτ+1) = 1

(zτ+1) . This gives a lower bound of(1 −
1

(zτ+1)) chance of success at a single point. Then, our chance of succeeding at allzτ

distinct points as(1− 1
(zτ+1))

zτ > 1
e
. Thus we have a chance of success of greater than

1
e
.

Once we have all the hyperplanes, we have enough informationto solve for the
optimal strategy. To solve this exactly still requires us tosolve an NP-hard problem, for
example using the MIP from Appendix F.

C Known payoffs/unknown type distribution

In this subsection, we study a different version of the Stackelberg learning problem:
we assume that the leader knows the payoff matrix for every follower type, but does
not know the (fixed) distribution over types. In each round, the leader commits to a
mixed strategy; the follower type is drawn according to the distribution over types; and
finally, the follower plays his best response to the mixed strategy given his type. Unlike
in Appendix B, the leader only learns the action that the follower plays, not the type.
This will allow her to conclude that the follower’s type musthave been one of a subset
of the types, but in general she will not know the type exactly, because multiple types
may be consistent with the follower’s action. If the leader learns the exact distribution
over follower types, then of course she can compute the optimal strategy; however, she
may also be able to learn the optimal strategy without learning the exact distribution
over types. In fact, in some cases it is not possible to learn the exact distribution—for
example, if there are two types for which the optimal response toany leader strategy is
column 1. The leader’s goal is to learn the optimal strategy in as few rounds as possible.
We try to minimize the worst-case number of rounds required.

First, we assume that the distribution is degenerate: the follower always has the
same typeθ, but the leader initially does not know which one. We obtain the following
simple result:

Proposition 1 If the follower has a fixed typeθ, then the leader can learn an optimal
Stackelberg strategy inτ rounds. Computationally, this requires only polynomial time.

Proof. Let σθ′

be an optimal Stackelberg strategy for the leader if the follower type is
θ′ (which can be computed in polynomial time using linear programming). Ifθ1, . . . , θτ

is an ordering of the types, then in roundi, let the leader commit toσθi . In roundi, the
leader obtains some utilityU i

l . Let i∗ ∈ arg maxi∈{1,...,τ} U i
l be a round in which the

leader obtained maximal utility. Then,σθi∗ is an optimal Stackelberg strategy. This is
because in the roundi such thatθi = θ (the true follower type), the leader will obtain
the maximum possible utility.

We now move on to the case of an arbitrary (fixed) distributionover types. Any
given leader strategy will result in a distribution over follower actions: given leader
strategyσ, the probability that follower actionaf is played isP (af |σ) =

∑

θ∈Θ xθ,σ,af

wherexθ,σ,af
is 1 if a follower of typeθ would respond toσ with actionaf , and0

otherwise. If the leader commits to the same mixed strategyσ for a sufficiently large
number of rounds, the leader will (approximately) learnP (af |σ) for all af . (In practice,
it may also be desirable not to have to switch strategies too often.) We assume that the
leader learns in this manner, that is, by using the same mixedstrategy for sufficiently
long to learn theP (af |σ) before switching to another mixed strategy. We call such a
period in which the leader only plays a single mixed strategyanextended sample. Our
objective is to minimize the number of extended samples needed to learn the optimal
strategy.

Theorem 7. If the follower types are drawn independently from a fixed distribution,
the leader can learn enough about the distribution to determine an optimal Stackelberg
strategy using2τ extended samples. Computationally, this requires polynomial time.

Proof. LetAθ
f be the set of all follower actions that a follower of typeθ will play against

some leader strategyσ, that is,Aθ
f = {af ∈ Af : (∃σ) BR(θ, σ) = af}. We can find

these sets as follows.af ∈ Aθ
f if there is a feasible solution to the following set of linear

inequalities (whereσ(al) is the probability that the leader puts onal):

(∀a′
f)

∑

al
σ(al)uf (θ, al, af) ≥

∑

al
σ(al)uf (θ, al, a

′
f)

∑

al
σ(al) = 1

(∀al) σ(al) ≥ 0

While these inequalities only guarantee that there is a leader mixed strategy for which
af is oneof the best responses, by the nondegeneracy and bounded minimum volume
assumptions, there is such a strategy for whichaf is theuniquebest response.

In the learning process, we first determine, for each typeθ with |Aθ
f | > 1, the

probabilityP (θ) of that type. To do so, we find two leader strategiesσθ,1, σθ,2 such
that BR(θ, σθ,1) 6= BR(θ, σθ,2), but for anyθ′ 6= θ, BR(θ′, σθ,1) = BR(θ′, σθ,2).
Once we have found such a pair of leader strategies, we can extended-sample both of
them; as we switch from one to the other, some probability mass will shift from one
follower action to another, and the amount of mass must be exactly P (θ). We find these
two points by finding one of the separating hyperplanes forθ, identifying two points
(leader mixed strategies) close to but on opposite sides of the hyperplane, and checking
that they have the desired properties (if not, we can repeatedly draw a new pair of
points in a way that guarantees we will eventually succeed).All of this can be done in
polynomial time using linear programming, as we explain next.

First, we need to find two actionsa1
f , a2

f ∈ Aθ
f that correspond to bordering regions—

that is, for which there is a leader mixed strategy such that afollower of typeθ is indif-
ferent between these two actions (and strictly prefers themto all other actions). We let
a1

f be an arbitrary member ofAθ
f . Then, for everya′

f ∈ Aθ
f with a′

f 6= a1
f , we check if

it can take the role ofa2
f , by solving the following linear program:

maximize ε
subject to
∑

al
σ(al)uf (θ, al, a

1
f) =

∑

al
σ(al)uf (θ, al, a

′
f)

(∀a′′
f /∈ {a1

f , a′
f})

∑

al
σ(al)uf (θ, al, af) ≥

∑

al
σ(al)uf(θ, al, a

′′
f) + ε

∑

al

σ(al) = 1

(∀al) σ(al) ≥ 0

If the optimal solution has a positive objective value, thenit corresponds to a mixed
strategyσ such that the follower is indifferent betweena1

f anda2
f (= a′

f), and strictly
prefers these two actions to all other actions. Now, we can find two pointsσ1 andσ2,
each within distanceδ of σ, such that the follower strictly prefers to playa1

f againstσ1,
and strictly prefers to playa2

f againstσ2. We can then check whether these two points
satisfy the required conditions forσθ,1 andσθ,2; if they do not, we can find points that

do by repeatedly shrinkingδ and perturbingσ on its hyperplane (which is guaranteed
to work due to the nondegeneracy/minimum volume assumptions).

Hence, we can findP (θ) for everyθ with |Aθ
f | > 1. After we have done so, for the

θ with |Aθ
f | = 1 (the types that respond to every leader strategy with the same action),

we cannot learn their individual probabilities, as pointedout before; however, all that
is needed to find an optimal leader strategy is, for each action af , the total probability
of the types that always playaf . We can infer all these probabilities from any single
extended sample, as follows. We already knowP (θ) for everyθ with |Aθ

f | > 1, and we
know which actions these types play at the extended sample. So, we can subtract these
probabilities from the action probabilities in the extended sample, and the remaining
probabilities on actions are the probabilities that we want.

For each type, we used at most 2 extended samples, resulting in at most2τ ex-
tended samples. Computationally, this approach requires solving at most2τ |Af | linear
programs.

This will discover almost the entire distribution, with oneexception: if there are two
(or more) types that always play the same action, then it is impossible to distinguish
them and we can only learn their aggregate probability. By the nondegeneracy assump-
tion, this can only happen if there is a fixed follower action that is the best response for
those types againstanyleader strategy—that is, there are no separating hyperplanes for
those types. Of course, knowing the aggregate probability is sufficient for computing
the optimal Stackelberg strategy for the leader, because iftwo types are indistinguish-
able then we may as well merge them into a single type. Of course, even given the
distribution, it is NP-hard to compute the optimal mixed strategy in this context. This
is not in contradiction with the above theorem, which only considers the computation
needed to learn enough about the distribution. To find the optimal mixed strategy, an
NP-hard problem still needs to be solved, which can be done, for example, using the
MIP in Appendix F

D Omitted proofs from Section 4

Theorem 2. For all constantε > 0, no polynomial-time factor-τ1−ε approximation
exists for BOFT unless NP= P, even if there are only two follower actions.

Proof. It is known that no polynomial-time factor-|V |1−ε approximation exists for
MAX-INDEPENDENT-SET (given by a graph(V, E)), unless NP = P [17]. We show
our result by reducing an arbitrary instance(V, E) of this problem to a game as follows.
For everyv ∈ V , there is a follower typeθv, and a leader actionav

l . The prior over fol-
lower types is uniform. There are two follower actions,A andB (for each follower
type). The leader gets utility 1 if the follower playsA, and 0 otherwise. The follower’s
utility is defined as follows.

– For allv ∈ V , uf(θv, av
l , A) = |V |.

– For allv, w ∈ V with v 6= w, uf (θv, aw
l , A) = 0.

– For all (v, w) ∈ E, uf (θv, aw
l , B) = 1 + |V |2

– For all (v, w) /∈ E, uf (θv, aw
l , B) = 1.

Suppose there is an independent setS of sizek in (V, E). Consider a mixed strategy
that places probability1

k
on eachav

l with v ∈ S. Then, for every typeθv with v ∈ S,
the follower will playA, because the follower will getn

k
≥ 1 for playingA, and 1 for

playingB (because noaw
l with (v, w) ∈ E is ever played, becauseS is an independent

set).
Correspondingly, suppose there is a leader strategy that gets k types to playA.

Let S be the set of verticesv such that the follower playsA for θv; we will show
it is an independent set. Ifθv playsA, thenav

l must get probability at least1/n (to
make playingA optimal for the follower). But, no actionaw

l with (v, w) ∈ E can get
probability at least1

n
, because in that case the expected utility for the follower (with

typeθv) of playingB is at least(1
n
)(1 + n2) > n. So thek types must constitute an

independent set.
Hence, we have shown that the number of types playingA (which is proportional to

the leader’s utility) for the optimal leader strategy is equal to the size of the maximum
independent set. Since the numberτ of types for the follower is equal to|V |, this gives
us the desired result.

Theorem 3. There is a polynomial-time factor-τ approximation algorithm for BOFT.

Proof. Let σ∗ be an optimal leader strategy, that is,
σ∗ ∈ arg maxσ

∑

θ∈Θ P (θ)
∑

al
σ(al)ul(al, BRf (θ, σ)). Consider the following sim-

ple randomized algorithm: choose a typeθ uniformly at random and play a mixed leader
strategyσθ that maximizes utility against that single type, that is,
σθ ∈ arg maxσ

∑

al
σ(al)ul(al, BRf (θ, σ)). (We can find such a mixed leader strat-

egy in polynomial time by the linear programming approach from [2].) For everyθ, we
have
∑

al
σθ(al)ul(al, BRf (θ, σθ)) ≥

∑

al
σ∗(al)ul(al, BRf (θ, σ∗)). The probability that

θ is chosen both by our algorithm and by nature as the type of thefollower is(1/τ)P (θ).
Because utilities are bounded below by zero, the expected utility that we receive is at
least

∑

θ∈Θ(1/τ)P (θ)
∑

al
σθ(al)ul(al, BRf (θ, σθ)) ≥

(1/τ)
∑

θ∈Θ P (θ)
∑

al
σ∗(al)ul(al, BRf (θ, σ∗)). Hence, this randomized algorithm

results in a factor-τ approximation. (We emphasize that this algorithm randomlychooses
a mixed strategy to commit to, which is not the same as committing to the corresponding
mixture of those mixed strategies.)

Instead of randomizing uniformly over which of theσθ to commit to, we can in-
stead, for eachθ, evaluate the total expected utility that results from committing to the
strategyθ (which is
∑

θ′∈Θ P (θ′)
∑

al
σθ(al)ul(al, BRf (θ′, σθ))), and choose one that maximizes this ex-

pected utility. This cannot lead to a lower expected utilityfor the leader; hence, this
gives us a deterministic algorithm with the same approximation guarantee.

Theorem 4. WOFT is completely inapproximable in polynomial time, unless P=NP
(that is, it is hard to distinguish between instances where the leader can get at least1 in
the worst case, and instances where the leader can only get0)—even if there are only
four follower actions.

Proof. We reduce an arbitrary instance of 3SAT to a game such that theleader can
obtain an expected utility of1 if the 3SAT instance is satisfiable, and0 otherwise. The

3SAT instance consists ofn variables,x1, . . . , xn, andm clauses,C1, . . . , Cm. We
create one type for each variable and for each clause. In the game, for every variable
xi, we have two leader actions,a+xi

l anda−xi

l . The follower has four actions,A, B, C,
andD. The leader gets utility0 if the follower playsA, and1 otherwise. There are two
kinds of follower type: one for each variable (θxi) and one for each clause (θCj).

For a typeθxi corresponding to a variable, we make it so that actionsC andD are al-
ways suboptimal for the follower, so we only considerA andB. We letuf(θxi , a+xi

l , A) =

uf (θxi , a−xi

l , A) = n, anduf (θxi , a
+xj

l , A) = uf(θxi , a
−xj

l , A) = 0 for i 6= j. Also,
we letuf (θxi , al, B) = 1 for all al. The following table gives the payoff matrix for type
θx1 as an example.

Mx1
:

A B
+x1 0,n1,1
−x1 0,n1,1

0,01,1
0,01,1

. .

. .

. .

For a typeθCj corresponding to a clause, for each literalλ in the clause (where the
set of all literals is{+xi : i ∈ {1, . . . , n}} ∪ {−xi : i ∈ {1, . . . , n}}), exactly one of
the three actionsB, C, D will give the follower utilityn if the leader playsaλ

l (and each
of these three actions will correspond to one of the three literals in the clause). Playing
A always gives the follower utility1. Otherwise, the follower gets0. For example, if
C1 = (+x1 ∨ −x2 ∨ +x4), then the following table gives the payoff matrix for type
θC1 .

Mc1
:

A B C D
+x1 0,11,n1,01,0
−x1 0,11,01,01,0
+x2 0,11,01,01,0
−x2 0,11,01,n1,0
+x3 0,11,01,01,0
−x3 0,11,01,01,0
+x4 0,11,01,01,n
−x4 0,11,01,01,0

We now show that the leader can obtain a utility of1 in this game against every type
if and only if the 3SAT instance has a satisfying assignment (and will get0 against at
least one type otherwise). Letσ be the mixed strategy to which the leader commits.

For each variablexi, if σ(a+xi

l) + σ(a−xi

l) ≤ 1
n

, then a follower of typeθxi will
playB, otherwise it will playA. Hence, the leader will get1 for all types corresponding
to variables if and only if the above inequality holds for every variablexi; otherwise,
the leader will obtain0 against at least one type corresponding to a variable.

For each clauseCj , if for at least one of the three literalsλ in the clause, we have
σ(aλ

l) ≥ 1
n

, then a follower of typeθCj will play B, C, orD; otherwise, it will playA.

Hence, the leader will get1 for all types corresponding to clauses if and only if every
clause contains at least one literal for which the above inequality holds; otherwise, the
leader will obtain0 against at least one type corresponding to a clause.

Now, suppose that the 3SAT instance has a satisfying assignment. Then, consider
the mixed strategy that places probability1/n on every literal that is set totrue in the
satisfying assignment. For every variablexi, we haveσ(a+xi

l) + σ(a−xi

l) ≤ 1
n

, so
the follower will playB for all the types corresponding to variables. For every clause,
for at least one of the three literalsλ in the clause, we haveσ(aλ

l) ≥ 1
n

(because the
assignment satisfies the formula), so the follower will playB, C, or D for all the types
corresponding to clauses. Hence, the leader obtains utility 1 for every follower type.

Conversely, suppose that there exists a mixed strategy suchthat the leader obtains
positive utility for every follower type. For every variablexi, we must haveσ(a+xi

l) +
σ(a−xi

l) ≤ 1
n

. Hence, at most one ofa+xi

l anda−xi

l can receive probability at least
1/n. Now consider the following assignment: ifa+xi

l receives probability at least1/n,
setxi to true; if a−xi

l receives probability at least1/n, setxi to false; otherwise, setxi

arbitrarily. Because the leader receives utility at least1 against every type corresponding
to a clause, for every clause, for at least one of the three literalsλ in the clause, we must
haveσ(aλ

l) ≥ 1
n

. But that means that the clause either contains some+xi wherexi

is set totrue, or some−xi wherexi is set tofalse. It follows that our assignment is a
satisfying assignment.

Theorem 5. WORT is NP-hard.

Proof. We reduce an arbitrary instance of 3-COVER (where we are given a set of el-
ementsS (|S| = n), a collection of subsetsSi ⊆ S with |Si| = 3, and we are asked
whether all ofS can be covered withn/3 of theSi) to a game with ranges where the
leader can obtain an expected utility of at least3/n if and only if a 3-cover exists.

For eachSi, let there be both a rowaSi

l and a columnaSi

f . Also, let there be a
columnas

f for eachs (these columns are really bad for the leader and must be avoided).
Let the utilities be defined as follows:
ul(a

Si

l , aSi

f) = 1

ul(a
Si

l , a
Sj

f) = 0 for i 6= j

uf (aSi

l , aSi

f) ∈ [0, 1]

uf (aSi

l , a
Sj

f) = 0 for i 6= j

uf (aSi

l , as
f) = 1 if s /∈ Si

uf (aSi

l , as
f) = −n if s ∈ Si

If there exists a 3-cover (of sizen/3), then the leader can obtain guaranteed utility
3/n, as follows: randomize uniformly over the strategies corresponding to the 3-cover
(probability3/n each). The follower will not be incentivized to play anyas

f , because
that gives him an expected utility of at most−3 + 1 = −2. The follower will not be
incentivized to play anaSj

f for which Sj is not in the 3-cover. because it will give him
utility 0 (note that ties are broken in favor of the leader, as always).The follower may
be incentivized to play anyaSi

f for whichSi in the 3-cover; for each of these, the leader
will get 3/n in expectation.

Conversely, if the leader can get guaranteed utility3/n, consider the set of all the
Si for whichaSi

l receives positive probability for the leader. The claim is that this must
be a 3-cover (of size3/n). First, the follower cannot be incentivized to play anyas

f .

Hence, for eachs, someaSi

l with s ∈ Si must get positive probability for the leader.
Now suppose strictly more thann/3 of theaSi

l get positive probability for the leader.
Then one of them must get probability less than3/n. The column player might be
incentivized to play the correspondingaSi

f (since that may be the only one that ever
gives the follower positive utility), in which case the row player’s expectation is less
than3/n, contrary to assumption.

E Worst-case optimization for linked range types

We now define a generalization of WORT (from subsection 4.3, which we can prove is
inapproximable unlessP = NP . This generalization allows the follower’s payoffs to
be linked across entries. We refer to this problem asworst-case optimization for linked
range types (WOLRT). Specifically, instead of having ranges for each follower entry,
we now have a linear expression for each follower entry whichmay involvesymbols:
an example expression would be3c1 + 4c2 + 1. For each symbol, there is a range (for
example,c1 ∈ [0, 1]—in fact, without loss of generality, we can assume every range is
[0, 1]), and a symbol can occur in multiple entries.

For example, consider the following game with linked ranges, with c1, c2 ∈ [0, 1]:

L R
U 0, 1 + c1 1, 0
D 1, 0 0, 1 + c1/2 + c2/2

If the leader places less than3/7 probability onU , then the follower is guaranteed to
play R; this results in a utility of at most3/7 for the leader. If the leader places more
than3/5 probability onU , then the follower is guaranteed to playL; this results in a
utility of at most2/5 for the leader. If the leader places probability between3/7 and
3/5 on U , then the follower may end up playing eitherL or R; by placing probability
1/2 onU , the leader obtains an expected utility of1/2, which is optimal.

We note that WOLRT generalizes WORT, because we can have a separate symbol
for every entry.

Theorem 8. WOLRT is completely inapproximable in polynomial time, unless P=NP
(that is, it is hard to distinguish between instances where the leader can get at least1
in the worst case, and instances where the leader can only get0).

Proof. We reduce an arbitrary SET-COVER instance (where we are given a setS, a
collection of subsetsSi of S, and a numberk, and are asked whether all ofS can be
covered with at mostk of the Si) to a WOLRT instance such that the leader can get
utility 1 in the worst case if there is a set cover of size at mostk, and0 otherwise.

With everys ∈ S, we associate a symbolcs ∈ [0, 1]. For everySi, the leader has
an actionaSi

l , and the follower has an actionaSi

f . Additionally, for everys ∈ S, the
follower has an actionas

f . We have:

ul(·, a
s
f) = 0

ul(·, a
Si

f) = 1
uf (·, as

f) = cs

uf (aSi

l , aSi

f) = k
∑

s∈Si
cs

uf (aSi

l , a
Sj

f) = 0 for i 6= j

If there is a covering of sizek, then the leader can uniformly randomize over the
aSi

l corresponding to that covering. Then, for anys′ ∈ S, if the follower plays one
of the aSi

f whereSi is in the covering ands′ ∈ Si, his expected utility is at least

(1/k) · k(
∑

sinSi
cs) ≥ cs′ ; so there is no reason for the follower to playas′

f , and the
leader is guaranteed a utility of1.

Conversely, suppose that there is a strategyσ that guarantees the leader positive
utility, that is, it guarantees that the follower will play one of theaSi

f . For anys′ ∈ S,
consider the scenario wherecs′ = 1 and the othercs are 0. The follower is incentivized
to play someaSi

f ; it must be thats′ ∈ Si, and the follower’s expected payoff for playing

this isσ(aSi

l) · k
∑

sinSi
cs) = σ(aSi

l) · k, so it follows thatσ(aSi

l) ≥ 1/k. There can
be at mostk subsetsSi for which this is true, and they must cover all thes′ ∈ S, so it
follows there is a covering of size at mostk.

F Mixed integer program formulations of BOFT and WOFT

First let us introduce a mixed integer program (which, in ourview, simplifies the known
mixed integer program [12] slightly, but the idea is similar). It uses auxiliary variables
q(θ, al, af), which correspond to the probability thatal, af are played, given that the
follower has typeθ—which will be equal to0 if af is not a best response forθ, and
equal toσ(al) otherwise. It also uses binary indicator variablesb(θ, af) ∈ {0, 1} for
whether the best response for typeθ is af .

maximize
∑

θ P (θ)
∑

al,af
q(θ, al, af)ul(al, af)

subject to
(∀θ)

∑

af
b(θ, af) = 1

(∀θ, al, af) q(θ, al, af) ≤ b(θ, af)
(∀θ, al)

∑

af
q(θ, al, af) = σ(al)

(∀θ, af , a′
f)

∑

al
q(θ, al, af)(uf (θ, al, af) − uf (θ, al, a

′
f)) ≥ 0

∑

al
σ(al) = 1

(∀al) σ(al) ≥ 0

The following is a mixed integer program (MIP) formulation for WOFT. In this
MIP, we assume that all payoffs are normalized to lie in[0, 1]. Again, we use a binary
variableb(θ, af) ∈ {0, 1} that indicates whetheraf is the best response forθ. We
also use variablesUl (the leader’s worst-case utility),Ul(θ) (the leader’s utility if the
type isθ), Uf(θ, af) (the follower’s utility for playingaf givenθ), U ′

f (θ, af) (equal to
Uf (θ, af) if af is the best response forθ, 0 otherwise),Uf (θ) (the follower’s utility if
the type isθ).

maximizeUl

subject to
(∀θ)

∑

af
b(θ, af) = 1

(∀θ, af) Uf (θ, af) =
∑

al
σ(al)uf (θ, al, af)

(∀θ, af) U ′
f (θ, af) ≤ Uf (θ, af)

(∀θ, af) U ′
f (θ, af) ≤ b(θ, af)

(∀θ) Uf (θ) =
∑

af
U ′

f (θ, af)

(∀θ, af) Uf (θ) ≥ Uf (θ, af)
(∀θ, af) Ul(θ) ≤

∑

al
σ(al)ul(al, af) + (1 − b(θ, af))

(∀θ) Ul ≤ Ul(θ)
∑

al
σ(al) = 1

(∀al) σ(al) ≥ 0

