
COMPSCI 638: Graph Algorithms September 27, 2019

Lecture 10
Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In the last lecture, we saw that uniform sampling allows us to build a sparsifier of an undirected
graph, but when the minimum cut value is small, the sparsifier might be dense. In this lecture, we
further study non-uniform sampling for graph sparsification.

2 Sampling via Edge Strengths

Recall the graph sparsification setting: we are given an undirected graph G = (V, E) and some
ε ∈ (0, 1). Our goal is to construct a graph H on V that, with high probability, preserves the value
of every cut in G up to a (1± ε) factor. In Lecture 9, we showed that sampling each edge e with
probability p = c · log n

ε2λ
(and setting the weight of sampled edges to 1/p) yields a valid sparsifier,

but when λ is small, it may contain many edges.
To mitigate this, we first recall a couple of definitions. Let λe denote the connectivity of an edge

e = {u, v}; it is defined as the minimum u-v cut value. Also, let se denote the strength of an edge
e; it is defined as the largest minimum cut value of any induced subgraph containing e. In other
words, if se = s, then there exists a subset of vertices whose induced subgraph has minimum cut
value s. In Lecture 9, we showed that se ≤ λe.

The natural generalization of sampling at rate p = c · log n
ε2λ

would be to replace the λ with λe
for each edge e. However, as we will see, this approach is challenging to analyze. Instead, we will
present the following result of Benczúr and Karger [BK15].

Algorithm 1 Sampling via Edge Strengths (Benczúr and Karge [BK15])

Input: An undirected graph G = (V, E) on n vertices with edge strengths se.
1: We will construct a graph H with vertex set V and edge set EH.
2: for e ∈ E do
3: Add e to EH with probability p = c · log n

ε2se
for some constant c.

4: if e was added to EH then
5: Set the weight of e in H to be 1/pe.
6: return H = (V, EH) as a sparsifier for G

Theorem 1 (Benczúr and Karger [BK15]). The output of Algorithm 1, with high probability, preserves
the value of every cut up to a (1± ε) factor. The expected number of edges it contains is O(n log n/ε2).

We first bound the expected number of edges in the sparsifier.

10-1

Lemma 2. In any undirected graph G = (V, E) on n vertices,

∑
e∈E

1
λe
≤ ∑

e∈E

1
se
≤ n− 1

Proof. Note that the first inequality follow from the inequality se ≤ λe, which we proved in Lecture
9. We prove the second inequality by induction on the number of vertices in the graph.

Let C denote the set of edges in a minimum cut, and let λ = |C|. Notice that any edge e ∈ C
satisfies λe = λ. Furthermore, for any e ∈ C, the graph G itself is an induced subgraph containing
e, and G has minimum cut value λ. Thus, se ≥ λ = λe, which means se = λe = λ, so

∑
e∈C

1
se

= λ · 1
λ
= 1. (1)

Now suppose we remove the edges of C, creating graphs G1 and G2 on n1 and n2 vertices, respec-
tively (so n1 + n2 = n). Every remaining edge e has some new strength s′e, and s′e ≤ se because
any induced subgraph in G1 (or G2) is also an induced subgraph in G with the same minimum cut
value. Applying the induction hypothesis on G1, we have

∑
e∈E(G1)

1
se
≤ ∑

e∈E(G1)

1
s′e
≤ n1 − 1,

and the same statement holds for G2. Putting this together with (1), we get

∑
e∈E

1
se

= ∑
e∈E(G1)

1
se

+ ∑
e∈E(G2)

1
se

+ ∑
e∈C

1
se
≤ (n1 − 1) + (n2 − 1) + 1 = n− 1.

Notice that Lemma 2 implies the second part of Theorem 1. Furthermore, this bound is tight up
to a logarithmic factor since any sparsifier of a connected graph on n vertices must contain at least
n− 1 edges to remain connected. So for the remainder of this section, we will prove that with high
probability, every cut is preserved up to a (1± ε) factor.

A simplifying assumption: For ease of presentation, we assume that every edge has strength
se = 2i · λ for some integer i ≥ 0, where λ is the size of the global minimum cut. Note that this
assumption is fairly simple to justify: if some strength value se is between 2kλ and 2k+1λ for some
k, we can mentally boost its value to 2k+1λ and adjust for this by similarly boosting the constant c
in our sampling rate by a factor of two.

We begin by observing some structural properties that edge strengths induce on a graph. Let k
be a positive integer and let us define a relation on V as follows:

Rk = {(u, v) : su,v ≥ k}.

In other words, two vertices u and v are related under Rk if there exists an induced subgraph that
contains u and v with minimum cut at least k. (Note that the “strength” of {u, v} is well-defined
even if {u, v} is not an edge in the graph.)

Lemma 3. For every k, the relation Rk on V is an equivalence relation.

10-2

Proof. The relation is trivially reflexive, and it is symmetric because the graph is undirected.
Now suppose uRkv and vRkw for some vertices u, v, w ∈ V. Then there is a subgraph G1 that

contains u, v with minimum cut at least k, and a subgraph G2 that contains u, v with minimum cut
at least k. Consider the graph G3 induced by the union of the vertices in G1 and G2. Now consider
any cut with edge set C in G3: since v is in both G1 and G2, C must be a non-trivial cut at least one
of G1, G2. Thus, C must contain at least k edges, so the minimum cut size of G3 is at least k.

Now recall that if R is an equivalence relation on V, then R induces a partition on V; we let
P(R) denote the subsets, also known as blocks, created by this partition. Thus, Lemma 3 tells us
that if u, v are in a block of Rk, then the strength of {u, v} is at least k. Furthermore, the next lemma
shows that for any k, the partition P(Rk+1) is a refinement of P(Rk). In other words, every block of
P(Rk+1) is a subset of some block of P(Rk) (see Fig. 1).

Lemma 4. For any integer k, the partition P(Rk+1) is a refinement of the partition P(Rk).

Proof. Let B be some block of P(Rk+1) containing a vertex u. It suffices to show that every vertex
v ∈ B is in the same block of P(Rk) as u, that is, u and v are also related under Rk. This is quite
straightforward: since u and v are related under Rk+1, there exists an induced subgraph containing
{u, v} with minimum cut value at least k + 1 > k. Thus, u and v are related under Rk.

Figure 1: A visual representation of the partitions induced on V. The largest box contains all of the
vertices, the blue boxes represent the blocks of P(Rλ), and the red boxes represent the blocks of
P(Rλ′) for some λ′ > λ. Note it is possible for vertices to exist outside of the blue boxes.

The strength of any two vertices is at least λ, so the partition P(Rλ) is simply V. Now consider
the partition P(R2λ). If su,v < 2λ, then su,v = λ (by our assumption), and u and v must be in
different blocks of P(R2λ). In general, by the definition of Rk, if the strength of {u, v} is less than
2iλ then the edge {u, v} (if it exists) must have endpoints in different blocks of P(R2iλ).

This observation allows us to view edge sampling as a process that occurs in phases, rather
than all at once. Observe that the following procedure is equivalent to sampling each edge e with
probability pe = c · log n

ε2se
:

1. Sample every edge with probability p = c · log n
ε2λ

.

2. Sample every sampled edge within each block of P(R2λ) with probability 1/2.

3. Sample every sampled edge within each block of P(R4λ) with probability 1/2.

4. Continue in this manner through the largest strength value.

10-3

We now turn to the main portion of the proof. Intuitively, our phase-based sampling procedure
samples edges with the same strength at the “proper” sampling rate according to the uniform
sampling theorem from Lecture 9. Each phase, with high probability, contributes some small
amount of error to our final estimate. We can bound the total error by O(ε), and since there are at
most O(log n) phases, we can apply a union bound on the overall failure probability.

More formally, let C be a cut with µ edges, and let wH(C) denote the weight of C in the sparsifier
H. We will show that, for some constant d,

Pr (wH(C) 6∈ [1− ε, 1 + ε]µ) ≤ 1
nd

Note that this is equivalent to showing |wH(C)− µ| = O(ε) · µ with high probability, because we
can suitably adjust the constant c in our sampling rate.

To bound |wH(C)− µ|, we will bound the error incurred by each phase of our sampling
procedure. In particular, we will find δi for i ≥ 0 such that the error incurred by the i-th phase is
at most δiµ, and ∑k

i=0 δi = O(ε). (Our first phase samples all edges with probability p and incurs
error δ0.) Let Ci denote the set of edges in C with strength at least 2iλ, and let µi = |Ci|. Observe
that in the initial phase, we are performing uniform sampling from Lecture 9, so the incurred error
is δ0 = ε with high probability.

In the next phase, we sample every edge with strength at least 2λ with probability p1 = 1/2. If
any such edge exists in C, then in fact µ1 ≥ 2λ. Substituting this into a Chernoff bound, we see that
the probability of incurring δ1 error in this phase is at most

exp
(
−δ2

1 p1µ1

3

)
≤ exp

(
−δ2

1 · 2λ

6

)
=

1
nd1

for some constant d1 by setting δ1 =
√

log n/2λ. We can apply the same reasoning in the subsequent
phase, on edges with strength at least 4λ, and set δ2 =

√
log n/4λ. In general, we can set δi =√

log n/2iλ for all i ≥ 1. Thus, the total factor of our error is

δ0 +
k

∑
i=1

δi = ε +
k

∑
i=1

√
log n
2iλ

= ε + O

(√
log n

λ

)
,

where last equality follows by noticing that δi forms a geometric series for i ≥ 1.
Recall that we want to the δi to satisfy δ0 + · · ·+ δk = O(ε), so we are not done if

√
log n/λ > ε.

But if this is the case, then p = log n/ε2λ > 1, which means every edge is sampled in the first
phase. In fact, we can extend this reasoning to claim that every edge is sampled in every phase
until we reach the first i such that log n/2iλε2 < 1. At this point, every edges with strength less
than 2iλ has been successfully sampled, so we can safely set

δ0 = δ1 = · · · = δi−1 = 0.

Finally, in this phase we have log n/2iλε2 < 1, which implies
√

log n/2iλ < ε, i.e., the ε term
dominates the error. So we can conclude ∑k

i=0 δi = O(ε), as desired.

Computing edge strengths: Notice that Algorithm 1 does not specify how we can compute the
value of se for every edge e. But at the same time, Lemma 2 tells us that we do not actually need the
exact value of se; it suffices to compute some value s′e ≤ se (so the sampling rate can only increase)
while maintaining ∑e 1/s′e ≤ n− 1. Indeed, Benczúr and Karger [BK15] show how this can be done
efficiently by using a maximum spanning tree.

10-4

2.1 Sampling via Edge Connectivities

We conclude by briefly discussing graph sparsification via edge connectivities. Fung et al. [FHHP19]
showed that if we sample each edge e with probability pe = c · log2 n/ε2λe, then the result is indeed
a (1± ε)-sparsifier with high probability. Note that the result is slightly denser than sampling by
strengths (by a log n factor), but it uses the more natural notion of edge connectivity.

The proof is quite involved, so instead, we give some intuition for why the additional log n
factor helps us achieve the sparsification guarantee. Recall that in the proof of Theorem 1, we used
the following fact repeatedly: if a cut C contains an edge with strength at least 2iλ, then C contains
at least 2iλ such edges. This allows us to bound the error in the sparsifier against these 2iλ edges
and ignore the rest of the cut.

In contrast, recall the graph K(1, 1, n) defined in Lecture 9: V = {s, v1, . . . , vn, t} and E contains
{s, vi} and {vi, t} for every i, as well as {s, t}. All edges have strength 2, but the connectivity of
{s, t} is n + 1. However, this does not imply that the cut {s}, say, has n + 1 edges with connectivity
at least n + 1. Thus, we cannot ignore the rest of the cut because we cannot bound our error against
this one edge with such high variance.

Instead, Fung et al. [FHHP19] show that by boosting our sampling rate by a log n factor, we can
bound the error in the sparsifier against the cut value in the entire graph (rather than within each
strength class). In our example, this amounts to bounding the error against the n + 1 edges in the
cut {s} rather than the one edge with connectivity n + 1, and we pay an extra log n factor to do so.

References

[BK15] András A Benczúr and David R Karger. Randomized approximation schemes for cuts
and flows in capacitated graphs. SIAM Journal on Computing, 44(2):290–319, 2015.

[FHHP19] Wai-Shing Fung, Ramesh Hariharan, Nicholas JA Harvey, and Debmalya Panigrahi. A
general framework for graph sparsification. SIAM Journal on Computing, 48(4):1196–1223,
2019.

10-5

	Overview
	Sampling via Edge Strengths
	Sampling via Edge Connectivities

