
COMPSCI 638: Graph Algorithms October 9, 2019

Lecture 13
Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In the Lecture 12, we gave a geometric description of a primal-dual algorithm for the Steiner forest
problem. In this lecture, we formally state this algorithm and prove that it is a 2-approximation.
We then apply this algorithm to the Generalized Steiner Forest problem.

2 A Primal-Dual Algorithm for Steiner Forest

Recall the Steiner forest problem: we are given an undirected graph G = (V, E), where each edge
e has cost c(e) ≥ 0, and a set of k vertex pairs (si, ti) for i = 1, . . . , k known as terminal pairs. Our
goal is to find a minimum-cost subset of edges that connects every (si, ti) pair. In this section, we
present and analyze an algorithm for this problem given by Agrawal, Klein, and Ravi [AKR95] and
simplified and generalized by Goemans and Williamson [GW95].

Let S denote the subsets of V that separate at least one (si, ti) pair. For any S ⊂ V, we let
δ(S) denote the set of edges with exactly one endpoint in S. Then the primal linear programming
relaxation of the Steiner forest problem is the following:

(P): min ∑
e∈E

c(e)xe

∑
e∈δ(S)

xe ≥ 1 ∀S ∈ S

xe ≥ 0 ∀e ∈ E,

Our algorithm heavily relies on the dual, given below:

(D): max ∑
S∈S

yS

∑
S:e∈δ(S)

yS ≤ c(e) ∀e ∈ E

yS ≥ 0 ∀S ∈ S

Our algorithm builds a solution by increasing the dual variables yS for every S ∈ A, where A is
initially the set of all terminal vertices (as singleton sets). Geometrically, this step corresponds to
expanding balls/moats surrounding the terminals. We say a dual constraint is tight when it is
satisfied with equality; when this happens, the corresponding edge is completely contained in a
moat and we add it to our solution F.

Note that when dual constraint becomes tight, we never increase the yS values in that constraint
again, so our dual solution is always feasible. Furthermore, whenever F is modified, we update A
so that it contains the set of connected components of (V, F) in S .

13-1

Finally, once all components are inactive (i.e., A is empty) and F contains the set of edges
corresponding to tight dual inequalities, we perform reverse-delete on F. In reverse order of
addition to F, we delete an edge if the resulting set of edges remains a feasible Steiner forest.

Algorithm 1 A primal-dual algorithm for Steiner Forest

1: Initialize: F = ∅, yS = 0 ∀S ⊆ V.
2: Let S denote the subsets of V that separate at least one (si, ti) pair.
3: while F is not a Steiner forest do
4: Set A as the set of connected components of (V, F) in S .
5: Increase yS for every S ∈ A uniformly until ∑S:e∈δ(S) yS = c(e) for some e ∈ E.
6: Add e to F. (Note: the yS corresponding to this constraint will never increase again.)
7: F′ = F
8: for e ∈ F′ in reverse order of addition to F do
9: if F′ \ {e} is a Steiner forest then

10: Remove e from F′.
11: return F′

Theorem 1. Algorithm 1 is a 2-approximation algorithm for the Steiner forest problem.

Before proving this theorem, we state a useful lemma whose proof we defer for now.

Lemma 2. Let F′ denote the final output of Algorithm 1 and let At denote the set A at the beginning of
some iteration t. Then the following inequality holds:

∑
S∈At

∣∣F′ ∩ δ(S)
∣∣ ≤ 2|At|.

Proof of Theorem 1. Let F∗ denote an optimal Steiner forest; we want to show c(F′) ≤ 2c(F∗). Notice
that edges in F′ correspond to tight dual constraints, so we have

c(F′) = ∑
e∈F′

∑
S:e∈δ(S)

yS = ∑
S

yS
∣∣F′ ∩ δ(S)

∣∣.
By weak duality, we also know ∑S yS ≤ c(F∗), so it would be sufficient for us to show |F ∩ δ(S)| ≤ 2
for every S ∈ S , but this is not necessarily true. (For example, consider a star centered at s1 = · · · =
sk whose other endpoints are the ti.) So instead, we will prove

∑
S

yS ·
∣∣F′ ∩ δ(S)

∣∣ ≤ 2 ∑
S

yS (1)

by showing that in each iteration of the algorithm, the increase in the left-hand side (LHS) of (1) is
at most twice the increase of the right-hand side (RHS). Note that in our analysis, F′ refers to the
final output of Algorithm 1, but we consider the changes in yS.

Consider some iteration t of the algorithm, and let At denote the set A at the beginning of the
iteration. Let ε denote the amount by which yS increased in this iteration for every S ∈ At. Then
the LHS of (1) increases by ε ∑S∈At |F′ ∩ δ(S)| and the RHS of (1) increases by 2ε|At|. By Lemma 2,
this implies that (1) holds throughout the entire algorithm.

13-2

Proof of Lemma 2. Let Ft denote the set F at the beginning of iteration t, so At denotes the connected
components of (V, Ft) that cut at least one (si, ti) pair. Notice that (V, Ft) is a forest because F is
initially a forest, and each edge we add joins two existing connected components. In fact, this
implies that (V, F) is acyclic throughout the entire algorithm.

Thus, we can now consider the following graph H: each vertex uT corresponds to a tree T in
(V, Ft), and {uT1 , uT2} is an edge if some edge in F′ \ Ft joins T1 and T2. Observe that H is also a
forest because, as we showed above, (V, F) never contains a cycle.

The active vertices of H are the ones that correspond to trees in At; the remaining vertices of H
are non-active. We want to show that the average degree of active vertices in H is at most 2.

We claim that every leaf of H is active. For contradiction, suppose uT1 is a non-active leaf of H
incident to some vertex uT2 . Then there exists an edge e in F′ \ Ft that joins the trees T1, T2 in (V, Ft).
Furthermore, e was not deleted by reverse-delete, which means F′ \ {e} is not feasible. However,
T1 is non-active, which means it does not separate any (si, ti) pair. This means F′ \ {e} is actually
feasible, contradicting the previous statement.

Thus, every vertex with degree 1 in H is active, so the average degree of non-active vertices is
at least 2. The handshaking lemma tells us that the average degree of all vertices in any tree is at
most 2, so the average degree of active vertices is at most 2.

3 Generalized Steiner Forest

In this section, we apply Algorithm 1 to solve the Generalized Steiner Forest (GSF) problem: we are
still given an undirected graph G = (V, E), each edge e has cost c(e) ≥ 0, and a set of k terminal
pairs (si, ti) for i = 1, . . . , k. In addition, each (si, ti) pair has an integer demand quantity ri ≥ 1, and
in our solution F ⊆ E, the minimum si-ti cut value must be at least ri for every i ∈ {1, . . . , k}. In the
version we consider, F is allowed to be a multiset, that is, F can include multiple copies of any edge.

The primal LP relaxation of the GSF problem is the following:

(P-G): min ∑
e∈E

c(e)xe

∑
e∈δ(S)

xe ≥ f (S) ∀S ⊆ V

xe ≥ 0 ∀e ∈ E,

where f : 2V → Z≥0 is defined as the maximum demand crossing S. In other words, if Si denotes
the subsets of V that separate si and ti, then f (S) = maxi:S∈Si ri. We let (IP-G) denote the integer
version of (P-G), which has the additional constraint xe ∈ {0, 1} for every e ∈ E.

3.1 Weakly Supermodular Functions

Notice that the LP relaxation of the Steiner forest problem (given in Section 2) is (P-G) with f (S) = 1
if S cuts at least one (si, ti) pair and 0 otherwise. Thus, Algorithm 1 is a special case of a more
general algorithm given by Goemans and Williamson [GW95], who considered an entire class of
functions f : 2V → {0, 1} known as proper functions.

Definition 1. A function f : 2V → {0, 1} is proper if f (V) = 0 and it satisfies the following:

1. Symmetry: f (A) = f (V \ A) ∀A ⊆ V.

13-3

2. Maximality: if A ∩ B = ∅, then f (A ∪ B) ≤ max{ f (A), f (B)}.

More specifically, Algorithm 1 gives a 2-approximation for the Steiner forest problem, which
is (IP-G) on a particular proper function f . The algorithm of Goemans and Williamson [GW95]
(which we now call the GW algorithm) gives a 2-approximation for (IP-G) on any proper function f .
Now we consider an even larger (proof omitted) class of functions.

Definition 2. Let f : 2V → Z be a function satisfying f (∅) = f (V) = 0. Then f is weakly supermod-
ular if for any A, B ⊆ V,

f (A) + f (B) ≤ max{ f (A \ B) + f (B \ A), f (A ∪ B) + f (A ∩ B)}.

We note that the GSF demand function f (S) = maxi:S∈Si ri is weakly supermodular; the proof
is fairly straightforward. Weakly supermodular functions are closely related to a well-known class
of functions known as submodular functions, which formally capture the notion of diminishing
returns. A notable example of a submodular function is the cut function δ : 2V → Z≥0, where δ(S)
is defined as the number of edges with exactly one endpoint in S.

Fact 3. The cut function δ satisfies the following inequalities for all A, B ⊆ V:

f (A \ B) + f (B \ A) ≤ f (A) + f (B)
f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B)

We are now ready to present and analyze an algorithm for the GST problem.

3.2 Primal-Dual Algorithms for GSF

Our algorithm is based on the following intuition: the GSF demand function fr defined as fr(S) =
maxi:S∈Si ri is weakly supermodular. The algorithm will define and solve a sequence of Steiner
forest instances by applying the GW algorithm on (IP-G), and in each iteration, we add the resulting
edges to our overall solution. We then update the demand function to account for the new solution,
and from Fact 3, this “residual” demand function is still supermodular, so we can repeat this
process until all demands are satisfied.

Algorithm 2 An primal-dual approach for GSF with demand function fr

1: Initialize: F = ∅, fres = fr.
2: while ∃S such that fres(S) 6= 0 do
3: Define g : 2V → {0, 1} as follows: g(S) = 1 if fres(S) ≥ 1 and 0 otherwise.
4: Run the GW algorithm on (IP-G) with demand function g to obtain Fres ⊆ E.
5: Add Fres to F.
6: For each S ⊆ V, set fres(S) = max{0, fres(S)− |Fres ∩ δ(S)|}.
7: return F

As we will see, a simple modification to Algorithm 2 yields a much better approximation
guarantee, but before seeing this modification, we first analyze this simpler version. Let rmax denote
the maximum demand quantity of any (si, ti) pair.

Theorem 4. Algorithm 2 is a 2rmax-approximation algorithm for the GSF problem.

13-4

Proof. We first show that Algorithm 2 terminates in at most rmax iterations. Consider any iteration,
and let S be a subset of V that satisfies g(S) = 1. Since Fres is a is a feasible Steiner forest with
demand function g, it must include at least one edge of δ(S), which means fres(S) decreases by at
least one at the end of the iteration. Thus, the total number of iterations is at most rmax.

Let OPT denote the cost of an optimal solution, and for any iteration i, let OPTi denote the
optimal solution cost of the (IP-G) Steiner forest instance we solve in iteration i. Since the demand
g in any iteration is at most fres, we have OPTi ≤ OPT.

Finally, let ALGi denote the cost of edges added in iteration i. Since the GW algorithm is a
2-approximation of (IP-G), we have ALGi ≤ 2 ·OPTi ≤ 2 ·OPT. Summing across the (at most) rmax
iterations, we see that the total cost is at most 2rmax ·OPT.

We now give the modification of Algorithm 2. The intuition is the following: instead of
simultaneously satisfying demand for all S such that fres(S) ≥ 1, we start with the subsets that
satisfy fres(S) = rmax and work our way down. In the first iteration, we can reduce the maximum
demand from rmax to rmax − 1, so in the next iteration, we can focus on the subsets that satisfy
fres(S) = rmax − 1. We repeat this process until all demands are satisfied.

Algorithm 3 An improved version of Algorithm 2

1: Initialize: F = ∅, fres = fr.
2: for i = rmax, rmax − 1, . . . , 1 do
3: Define gi : 2V → {0, 1} as follows: gi(S) = 1 if fres(S) = i and 0 otherwise.
4: Run the GW algorithm on (IP-G) with demand function gi to obtain Fi ⊆ E.
5: Add Fi to F.
6: For each S ⊆ V, set fres(S) = max{0, fres(S)− |Fi ∩ δ(S)|}.
7: return F

Theorem 5. Algorithm 3 is a 2Hrmax -approximation for the GSF problem, where Hn ≈ log n denotes the
n-th Harmonic number.

Proof. As discussed above, since Fi is a feasible solution for the Steiner forest problem with demand
function gi, each iteration decreases the demand of any S initially satisfying fres(S) = i to i − 1.
Thus, running the algorithm for iterations i = rmax, . . . , 1 results in a feasible solution.

Let x∗ denote an optimal solution to the Steiner forest integer program (IP-G), and let OPT
denote its cost. We claim that in any iteration i, x∗/i is a feasible solution for the Steiner forest
instance with demand gi. Let S be any subset with demand in gi (i.e., gi(S) = 1), so in this iteration,
fres(S) = i. Since x∗ is feasible, we have

∑
e∈δ(S)

x∗e ≥ fr(S) ≥ fres(S) = i,

which means x∗/i satisfies the demand gi(S) = 1.
Thus, letting OPTi denote the cost of the optimal solution of (IP-G) in iteration i, we have

OPTi ≤ OPT/i. Since the GW algorithm is a 2-approximation, the cost of Fi is ALGi ≤ 2 ·OPTi.
Putting this together, our total cost ALG satisfies

ALG =
rmax

∑
i=1

ALGi ≤ 2
rmax

∑
i=1

OPTi ≤ 2 ·OPT
rmax

∑
i=1

1
i
= 2Hrmax ·OPT.

13-5

4 Summary

In this lecture, we presented a primal-dual algorithm for the Steiner forest problem. We also
introduced the notion of proper and weakly supermodular functions, which we will further study
in the next lecture. Finally, we saw how to apply the Steiner forest algorithm to solve the generalized
Steiner forest problem.

References

[AKR95] Ajit Agrawal, Philip Klein, and R Ravi. When trees collide: An approximation algorithm
for the generalized steiner problem on networks. SIAM Journal on Computing, 24(3):440–
456, 1995.

[GW95] Michel X Goemans and David P Williamson. A general approximation technique for
constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

13-6

	Overview
	A Primal-Dual Algorithm for Steiner Forest
	Generalized Steiner Forest
	Weakly Supermodular Functions
	Primal-Dual Algorithms for GSF

	Summary

