
COMPSCI 638: Graph Algorithms October 18, 2019

Lecture 16
Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In the last lecture, we analyzed the greedy algorithm for the online Steiner tree problem. In this
lecture, we will use a similar approach to analyze the greedy algorithm for the online Steiner forest
problem, and also see an algorithm with provably optimal competitive ratio.

2 Online Steiner Forest

We are given a graph G = (V, E) where each edge e has cost c(e) ≥ 0. At each time i, the algorithm
is given one of k terminal pairs (si, ti) ∈ V ×V and must connect them by adding a subset of edges
to the solution F ⊆ E (initially empty). The goal is to minimize the total cost of the solution, and
the performance of an algorithm is measured by its competitive ratio (see Lecture 15).

2.1 The Greedy Algorithm

Notice that at time i, edges already in our solution F have already been “purchased,” so we can
think of their modified cost as zero. The greedy algorithm, at each time i, connects si to ti by adding
the edges of the shortest si-ti path according to the modified costs. This is equivalent to contracting
the entire si-ti path to a single vertex at the end of each time step.

Theorem 1. The greedy algorithm for Steiner forest is O(log2 k)-competitive.

Remark: Theorem 1 was originally proven by Azerbach, Azar, and Bartal [AAB04], though our
proof today will be slightly different. Furthermore, there is no known lower bound showing that
the greedy algorithm is ω(log k)-competitive, so the analysis of the greedy algorithm is not known
to be tight. However, we will analyze an algorithm in Section 2.2 that is O(log k)-competitive. This
is optimal, since Imase and Waxman [IW91] showed that any algorithm for online Steiner tree is
Ω(log k)-competitive.

Overview of proof: We first recall the analysis of the greedy algorithm for the Steiner tree problem
(see Lecture 15). At each step i, we incurred cost Ci ∈ (2`, 2`+1] for some `, and in the `-th dual, we
placed a ball around ti with radius 2`−1. This resulted in a set of dual solutions, and in each one,
every ball had the same radius. We then argued that each dual solution is feasible, so their average
is feasible, and the log k factor resulted from the number of dual solutions we constructed.

Our proof of Theorem 1 will proceed similarly. However, due to the nature of terminal pairs
(rather than vertices), it may not be possible to place a feasible dual ball at every time step. In these
cases, we will add an “accounting” edge in the corresponding dual. Our final (primal) cost will be
covered by the usual dual balls, as well as these accounting edges.

16-1

To bound the number of accounting edges, we will use the following result without proof; it is
sometimes known as the Erdős Girth Theorem. Recall that the girth of a graph is the length of the
shortest cycle in the graph.

Theorem 2. Let G = (V, E) be a graph on n vertices with girth g. Then |E| ≈ n1+O(1/g); in particular, if
g = Ω(log n), then |E| = O(n).

Proof of Theorem 1. We will construct a set of dual solutions, as discussed above. At each step i, let
Ci denote the incurred (modified) cost, and suppose Ci ∈ (2`, 2`+1] for some integer `. We first try
to place a ball in the `-th dual with radius 2`/ log k centered at either si or ti. (If both centers are
feasible, then we pick one arbitrarily.) If neither center is feasible, then there must exist terminals
x, y whose balls overlap with the balls around si and ti, respectively. In this case, we place an
“accounting edge” {x, y} in the graph corresponding to the `-th dual.

Let G` = (V`, E`) denote the graph containing the accounting edges in the `-th dual, and let
D(`) denote the cost of this dual solution. Since every vertex of V` is the center of a ball with radius
2`/ log k, we have

2`

log k
|V`| ≤ D(`). (1)

Note that the above expression is an inequality because Va does not include vertices that are not
incident to any accounting edges. Furthermore, at each time i, we either place a dual ball with
cost within a constant factor of Ci/ log k or we add an edge to E` that accounts for the cost of the
missing dual ball. Thus, if T(`) denotes the time steps associated with the `-th dual, we have

∑
i∈T(`)

Ci ≤ O(log k) ·
(

D(`) + |E`|
2`

log k

)
. (2)

We now state a lemma that allows us to invoke Theorem 2 to conclude the proof; we defer the proof
of this lemma to the end of this section.

Lemma 3. The girth of the accounting graph G` is Ω(log k).

Together, Lemma 3 and Theorem 2 imply |Ea| = O(|Va|). Combining this with (1) and (2), we
can conclude that the total cost of the algorithm is at most

k

∑
i=1

Ci ≤ O(log k) ·∑
`

D(`) = O(log2 k) ·OPT,

where the final inequality follows from the fact that there are essentially O(log k) different dual
solutions (see Lecture 15 for more details), and each provides a lower bound on OPT.

Proof of Lemma 3. Let C be a cycle in G` containing |C| edges. Let e = {x, y} denote the last edge
placed in C; suppose this occurred at time i. Then at time i, the algorithm sought the shortest si-ti
distance using modified edge costs; we will bound this cost Ci ∈ (2`, 2`+1] against |C|.

Consider any edge e′ = {x′, y′} 6= e of the cycle C. This edge, being an accounting edge, exists
because we could not place a ball around sj or tj for some j < i. Without loss of generality, assume
that the ball around sj would intersect with the ball around x′, and the same for tj and y′ (see Fig. 1).
Then one x′-y′ path follows the sequence (x′, sj, tj, y′). At time i, the modified cost of traversing sj

to tj is zero, so this is a x′-y′ path with modified cost at most 4 · 2`/ log k.

16-2

x′

sj

y′

tj

≤ 4r

0

e′ ∈ C

Figure 1: A diagram illustrating the proof of Lemma 3. Each of the four balls has radius r = 2`/ log k.
Since e′ was placed before e, at time i > j, the modified cost between sj and tj was 0. Thus, the
modified cost between x′ and y′ is at most 4r.

Applying this logic to every edge of C, we see that at time i, there exists a path from si to ti
whose modified distance is at most (|C| − 1)2`+2/ log k. Adding in modified cost from si to x and
from y to ti, we can conclude

2` < Ci ≤
2`+2

log k
(|C| − 1) +

2` + 2
log k

=
2`+2

log k
|C|.

Rearranging the above yields |C| ≥ log k/4 = Ω(log k).

2.2 Augmented Greedy

We now present a slightly modified algorithm that we call the augmented greedy algorithm. At
time i, if the algorithm incurs cost Ci ∈ (2`, 2`+1], then we try to place a ball in the `-th dual with
radius 2`−3 (rather than 2`/ log k). If this is not feasible at neither si nor ti, then there must exist
terminals x, y such that (WLOG) the balls around x and si overlap, and the same for y and ti. In
this case, we add the edges of shortest (modified) x-si path and y-ti path.

Theorem 4. The augmented greedy algorithm is O(log k)-competitive.

Proof. The proof follows the same structure as the proof of Theorem 1. We first notice that at each
step i, we incur cost Ci ∈ (2`, 2`+1], as well as (potentially) the modified cost of a x-si path and
y-ti path, where x, y are described above. However, since x and si have overlapping balls (and the
same for y and ti), this additional cost is at most 4 · 2`−3 = 2`−1 ≤ Ci. Thus, the overall cost of the
algorithm is at most double the cost of the standard greedy algorithm.

Let G` = (V`, E`) denote the graph containing the accounting edges in the `-th dual, and let
D(`) denote the cost of this dual solution. As we saw in the proof of Theorem 1, we have

2`−3|V`| ≤ D(`)

and the total cost incurred at steps associated with the `-th dual is

∑
i∈T(`)

Ci ≤ O(1) ·
(

D(`) + |E`|2`−3
)

.

Again, since there are O(log k) duals, it suffices to prove |E`| = O(|V`|). To do this, we will prove a
stronger claim, namely, the accounting graph is acyclic.

16-3

For contradiction, let C be a cycle in Ga and consider the last cycle e = {x, y} added to C;
suppose e was added at time i. Now let e′ = {x′, y′} 6= e be any edge in C; suppose e′ was added at
time j < i. Notice that at time i, there exists a x′-y′ path with modified cost zero, by following the
sequence (x′, sj, tj, y′) (assuming the balls around x′ and sj overlap). (We can see this in Fig. 1 with
r = 0.) Thus, we arrive at a contradiction:

2` < Ci ≤ 2 · 2`−3 + 0 · (|C| − 1) + 2 · 2`−3 = 2`−1.

3 Summary

In this lecture, we proved that the greedy algorithm for the online Steiner forest problem is
O(log2 k)-competitive, and a very similar analysis showed that the augmented greedy algorithm is
O(log k)-competitive. Both proofs use the technique of dual fitting introduced in Lecture 15.

References

[AAB04] Baruch Awerbuch, Yossi Azar, and Yair Bartal. On-line generalized steiner problem.
Theoretical Computer Science, 324(2-3):313–324, 2004.

[IW91] Makoto Imase and Bernard M Waxman. Dynamic steiner tree problem. SIAM Journal on
Discrete Mathematics, 4(3):369–384, 1991.

16-4

	Overview
	Online Steiner Forest
	The Greedy Algorithm
	Augmented Greedy

	Summary

