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1 Overview

In this lecture, we look at the fundamental concepts of spectral graph theory.

2 Spectral Graph Theory

The basic premise of spectral graph theory is that we can study graphs by considering their matrix
representations. Thus, we begin by briefly reviewing the basic properties of real square matrices,
which is sufficient for our purposes.

2.1 Linear Algebra Review

Let A be an n× n matrix over the reals; we often write A ∈ Rn×n. The column space is the set of all
linear combinations of the columns of A; its dimension is known as the rank of A. The null space of
A is the vectors x such that Ax = 0, and its dimension is known as the nullity of A. The rank-nullity
theorem tells us that the sum of the rank and nullity of A is equal to n.

The determinant of A is defined as follows:

det(A) = ∑
σ:[n]→[n]

sgn(σ)
n

∏
i=1

Ai,σ(i)

where [n] = {1, 2, . . . , n}, sgn(σ) denotes the sign of the permutation σ (1 if σ has an even number
of inversions and -1 otherwise), and Ai,j denotes the (i, j)-th element of A.

A non-zero vector x is an eigenvector of A associated with eigenvalue λ if Ax = λx. Note that if
x is an eigenvector of A, then so is any scaled version of x, so we often assume x has unit length.
Also, Ax = λx occurs for non-zero x if and only if det(A− λI) = 0, where I denotes the n× n
identity matrix. The polynomial det(A− λI) is known as the characteristic polynomial of A, and the
eigenvalues of A are its roots.

The trace of a square matrix, defined as the sum of its diagonal entries, is equal to the sum of its
eigenvalues. Also, the determinant of a matrix is equal to the product of its eigenvalues.

Theorem 1 (The Spectral Theorem). Let A ∈ Rn×n be a symmetric matrix. Then there exist λ1, . . . , λn ∈
R and mutually orthonormal vectors x1, . . . , xn such that xi is an eigenvector of A with eigenvalue xi for
every i ∈ [n].

If A ∈ Rn×n is symmetric with rank r, then r of the vectors given by Theorem 1 span the column
space of A, and the remaining n− r vectors span the null space of A. Furthermore, the eigenvalue
associated with each of these n− r vectors is 0, because Axi = λixi = 0 implies λi = 0.
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A square matrix is diagonal if its only non-zero entries are on its diagonal. It is well-known that
any symmetric matrix A ∈ Rn×n is diagonalizable, that is, there exist matrices L, D ∈ Rn×n such that
A = LDL−1, and D is diagonal. Furthermore, the diagonal entries of D are the eigenvalues of A,
and the columns of L are the corresponding eigenvectors. Since we can assume the eigenvectors
are orthonormal, we have L>L = I, which implies L> = L−1.

2.2 Matrices of Graphs

Now we consider an undirected graph G = (V, E) and a few of its matrix representations. The
adjacency matrix of G is defined as follows:

Aij =

{
1 if (i, j) ∈ E
0 otherwise.

Example 1: Let A be the adjacency matrix of the complete graph on n vertices; we shall compute the

eigenvalues of A. Notice that A = 1− I, where 1 denotes the all-ones n× n matrix. We see that the
all-ones vector is an eigenvector of 1 with eigenvalue n. Since the rank of 1 is 1, by the discussion
above, the remaining eigenvalues are all 0. Since Ax = (1− I)x = 1x− x, the eigenvalues of A
are simply the eigenvalues of 1 shifted down by one. Thus, the eigenvalues of A are n− 1 (with
multiplicity 1) and −1 (with multiplicity n− 1).

Example 2: Now let A be the adjacency matrix of a bipartite graph on n vertices, and let z be an
eigenvector of A corresponding to eigenvalue λ. Notice that by relabeling the vertices, we can
write the equation Az = λz as follows:[

0 M>

M 0

] [
x
y

]
=

[
M>y
Mx

]
=

[
λx
λy

]
,

where z = [x y]>, which implies M>y = λx and Mx = λy. Thus, we also have[
0 M>

M 0

] [
x
−y

]
=

[
−M>y

Mx

]
= −λ

[
x
−y

]
,

so −λ is also an eigenvalue of A. In fact, the converse is also true: if the eigenvalues of an adjacency
matrix A can be paired up in this manner, then the underlying graph must be bipartite.

The Laplacian: The Laplacian matrix L of G is defined as L = D− A, where D is the diagonal matrix
containing the degree values of G, and A is the adjacency matrix of G. It can be shown that L is
positive semidefinite (PSD), that is, L is symmetric and x>Lx ≥ 0 for every x ∈ Rn.

Theorem 2. Let M ∈ Rn×n be a symmetric matrix. Then the following are equivalent:

1. For every x ∈ Rn, x>Mx ≥ 0.

2. Every eigenvalue of M is non-negative.

3. There exists a matrix B such that M = B>B.
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Proof. (1) implies (2): Let v be an eigenvector of M corresponding to eigenvalue λ. Then Mv = λv,
which implies v>Mv = λv>v ≥ 0. Since v>v is non-negative, λ must also be non-negative.

(2) implies (3): Since M is symmetric, we can write M = QPQ> where the Q is orthogonal
and P is the diagonal matrix whose entries are the eigenvalues of M. Every eigenvalue of M is
non-negative, so P = R>R for some diagonal matrix R. Thus, M = QR>RQ> = (RQ>)>RQ.

(3) implies (1): Notice x>Mx = x>B>Bx = (Bx)>(Bx) ≥ 0.

The Laplacian of a matrix is associated with a quadratic form: if x ∈ Rn is a vector (i.e., a function
from V to R), then

x>Lx = ∑
(i,j)∈E

(xi − xj)
2.

(Notice that this equality immediately implies that L is positive semidefinite.) This notion is useful
because it generalizes cuts in a graph: for any S ⊆ V, if we set xu = 1 if u ∈ S and 0 otherwise, then
x>Lx precisely captures the number of edges with exactly one endpoint in S.

Recall that the goal of graph sparsification was the following: given a graph with Laplacian ma-
trix L, find a sparser graph that preserves all cut values. By the discussion above, this is equivalent
to preserving the value of x>Lx for every x ∈ {0, 1}. In spectral sparsification, we want to preserve
this value for any x ∈ Rn. For this problem, Batson, Spielman, and Srivastava [BSS12] gave a
solution containing O(n) edges. Notice that this result is stronger than the graph sparsification
results we saw in Lecture 10 in a few ways: it preserves every x ∈ Rn, there are no logarithmic
factors, the algorithm is deterministic.

3 Summary

In this lecture, we introduced the foundations of spectral graph theory.
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