
COMPSCI 638: Graph Algorithms November 13, 2019

Lecture 23
Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In this lecture, we continue studying applications of semidefinite programming. In particular, we
present an approximation algorithm for the graph coloring problem.

2 Graph Coloring

Let G = (V, E) be an undirected graph. We say G is k-colorable if there exists a proper coloring
using k colors, where a proper coloring is a function f : V → Z+ satisfying f (u) 6= f (v) for every
edge {u, v} ∈ E. (We think of each positive integer as a “color.”)

It is known that determining whether or not a graph is 3-colorable is NP-hard. Furthermore,
finding a 4-coloring of a 3-colorable graph is also NP-hard. In fact, k-coloring a 3-colorable graph in
polynomial time, for any constant k, would violate the Unique Games Conjecture. So for the rest of
this lecture, we focus on coloring a 3-colorable graph using a minimum number of colors.

Coloring using O(
√

n) colors: Let us make the following observations:

1. A graph is 2-colorable if and only if it is bipartite, and finding a 2-coloring of a bipartite graph
can be done using a simple breath-first search procedure.

2. If the maximum vertex degree in G is ∆, then finding a (∆+ 1)-coloring of G is straightforward:
a greedy strategy never gets “stuck” because every vertex has at most ∆ incident edges.

These two observations yield an algorithm due to Wigderson [Wig83]: if ∆ ≤
√

n, then by the
second observation, we can color G in O(

√
n) colors. Otherwise, let v be a vertex with degree

greater than
√

n and notice that its neighborhood N(v) is bipartite (because G is 3-colorable).
Thus, we can color N(v) using 2 colors, and we then remove them from the graph. We repeat this
iteratively until all degrees are less than

√
n. At this point, by the second observation, we can color

the remaining vertices using
√

n + 1 colors.
In each iteration, we remove at least

√
n vertices, so the total number of iterations is at most

n/
√

n =
√

n. In each iteration we use 2 new colors, and the remaining vertices require at most√
n + 1 colors, so the total number of colors we use is O(

√
n).

Generalization: The algorithm described above can be seen as a special case of the following
approach introduced by Blum [Blu94]: suppose we were given an algorithm that produces a
bipartite subgraph containing εn/ f (n) vertices for some constant ε > 0 and function f (n). In other
words, if C(n) denotes the number of colors we need, then

C(n) = 2 + C
(

n− εn
f (n)

)
.

23-1

(The previous algorithm essentially set ε = 1 and f (n) =
√

n.) From this, it can be shown that
reducing the number of vertices by half requires f (n)/ε calls to this algorithm, so

C(n) ≤ 2 f (n)
ε

+ C
(n

2

)
.

Thus, having such an algorithm yields an O(f (n) log n/ε)-coloring. In his paper, Blum [Blu94]
showed that there exists an algorithm with f (n) = n0.4, obtaining an Õ(n0.4)-coloring algorithm.
He also showed that additional preprocessing steps yields an Õ(n0.375)-coloring algorithm.

2.1 SDP for Graph Coloring

We now present a semidefinite program (SDP) for the graph coloring problem due to Karger,
Motwani, and Sudan [KMS98]. First, notice that graph coloring is equivalent to partitioning the
vertex set into k subsets such that no edge has both endpoints in one subset and k is minimized.
Notice that this is formulation is similar to the maximum cut problem (see Lecture 22).

So let us associate each vertex i with a unit vector vi ∈ Rn. Intuitively, in order for our coloring
to be valid, we need to ensure that vi and vj are “far apart” for every edge {i, j} ∈ E. Notice that
vi · vj captures this distance in an inverse manner: if vi · vj is large (i.e., close to 1), then the angle
between the vectors is small, which is undesirable. This leads to the following SDP:

(SDP): min t
vi · vj ≤ t ∀{i, j} ∈ E

vi · vi = 1 ∀i ∈ V.

Let χ = χ(G) denote the minimum number of colors needed to color G, and let η = η(G) denote
the size of the largest clique (i.e., complete subgraph) in G.

Lemma 1. The optimal solution t∗ of (SDP) satisfies t∗ ≤ −1/(χ− 1).

Proof. We proceed by inducting on χ. For each value of χ, we will construct a solution with objective
value −1/(χ− 1), and since (SDP) is a minimization, this implies the lemma. Each solution only
uses the first χ− 1 coordinates; the remaining n− (χ− 1) coordinates are all implicitly set to zero.
If χ = 2, then the graph is bipartite, so we can set vi = 1 and vj = −1 for every edge {i, j} ∈ E.
Then vi · vj = −1 = −1/(−1− 1), so we this is a feasible solution for t = −1.

Now assume χ = k + 1 for some k ≥ 1. The solution for χ = k gives us vectors v′1, . . . , v′k such
that v′i · v′j ≤ −1/(k− 1). We shall design vectors v1, . . . , vk, vk+1; recall that we only specify their
first k coordinates. The first k− 1 coordinates of vk+1 are all 0, and the k-th coordinate is 1:

vk+1 = (0, 0, . . . , 0, 1).

To construct vi for i ∈ {1, . . . , k}, we set the first k − 1 coordinates as αv′i (for some α to be
determined), and the k-th coordinate is −1/k:

v′i =
(

αvi,−
1
k

)
.

Recall that vi needs to be a unit vector; this is achieved by setting α =
√

1− 1/k2. Now we must
show that vi · vj ≤ −1/k. If i or j is equal to k + 1, then this is trivial. Otherwise, observe that

vi · vj = α2(v′i · v′j) +
1
k2 ≤

(
1− 1

k2

)(
− 1

k− 1

)
+

1
k2 = −1

k
.

23-2

Lemma 2. The optimal solution t∗ of (SDP) satisfies t∗ ≥ −1/(η − 1).

Proof. Without loss of generality, suppose the vertices {1, . . . , η} form a clique of size η. Now
observe that the following inequality holds:

η

∑
i=1

η

∑
j=1
j 6=i

vi · vj +
η

∑
i=1

vi · vi =

(
η

∑
i=1

vi

)
·
(

η

∑
i=1

vi

)
≥ 0.

Since vi · vi = 1, this implies that the left-most summation term above is at least −η. This term
contains η(η − 1) terms of the form vi · vj, so the average value (among these terms) is at least
−1/(η − 1), which implies that the maximum is also at least this value. Since t∗ corresponds to
some feasible solution, this implies the lemma.

We can formalize the connection between (SDP) and graph coloring using the Lovász Theta
Function: let θ = 1− 1/t∗ where t∗ is the optimal solution to (SDP). Then by Lemmas 1 and 2, we
have η ≤ θ ≤ χ. (Notice that η ≤ χ follows directly from their definitions.) In this next lecture, we
will see how this inequality this us an algorithm for the graph coloring problem.

3 Summary

In this lecture, we studied algorithms for coloring a 3-colorable graph using a minimum number of
colors. In particular, we gave an algorithm that uses O(

√
n) colors due to Wigderson [Wig83], and

began looking at an SDP-based algorithm due to Karger, Motwani, and Sudan [KMS98].

References

[Blu94] Avrim Blum. New approximation algorithms for graph coloring. Journal of the ACM
(JACM), 41(3):470–516, 1994.

[KMS98] David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by
semidefinite programming. Journal of the ACM (JACM), 45(2):246–265, 1998.

[Wig83] Avi Wigderson. Improving the performance guarantee for approximate graph coloring.
Journal of the ACM (JACM), 30(4):729–735, 1983.

23-3

	Overview
	Graph Coloring
	SDP for Graph Coloring

	Summary

