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Lecture 24

Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In this lecture, we revisit the sparsest cut problem. Recall that in Lecture 7, we gave an O(log n)-
approximation algorithm using a linear program. Today, we review that algorithm and prove that
the integrality gap of this linear program is Q(logn).

2 Sparsest Cut

In the sparsest cut problem (see Lecture 6), we are given an undirected graph G = (V,E) on n
vertices, and each edge (i,j) has capacity c(i,j) > 0. The sparsity of a cut S C V is defined as
5(S)/ min(|S|, |S|), where 6(S) denotes the total capacity of edges crossing Sand S = V' \ S. Our
goal in this problem is to find a cut with minimum sparsity.

The flux of a cut S C V is similar to the sparsity: it is defined as §(S)/|S| - |S|. Notice that
S| < |S| implies n/2 < [S| < n, which means dividing the sparsity of S by its flux yields a
2-approximation of the sparsity. Thus, up to constant factors, the flux and sparsity of a cut are
equivalent, so our goal is to find a cut with minimum sparsity.

2.1 An LP-based approach

Recall that in Lecture 7, we showed that finding the sparsest cut is equivalent to finding an
elementary cut metricd : V x V — {0,1} that minimizes

Xijc(i, )dij
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Furthermore, we showed that the set of cut metrics on V is equivalent to the set of /;-metrics. Since
our objective is a minimization, we can perform our search over /;-metrics to obtain an elementary
cut metric that achieves the same objective value.

Finally, instead of optimizing of /;-metrics, we choose to optimize over general metrics. This
results in a linear program that is equivalent to minimizing ¢(d):

(P): min Y _c(i, j)djj
i
Y dij>1
i
d is a metric.

As we saw, Bourgain’s theorem allows us to approximate any metric by an ¢;-metric with
O(logn) distortion, so the final result is an O(log n)-approximation for the sparsest cut problem.
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Constant degree expanders: To analyze the integrality gap of (P), consider the following procedure,
which constructs a graph H from a graph G with the same vertex set. For each vertex v, select
three neighbors of v in G uniformly at random and add the corresponding three edges in H. The
resulting graph has 3n vertices, so it is very sparse. Intuitively, this suggests that there are vertices
that are very far from each other, but as we will see, this is not true.

Consider the following “ideal” situation: the graph H generated above is a rooted tree, where
each vertex has three children. Such a tree has O(log 1) layers, so the distance between any two
vertices in H is O(logn). This is not precisely true, but it can be shown that with high probability,
the maximum pairwise distance in H is ©(logn).

Integrality gap: Notice that in the constant-degree expander H constructed above, the sparsity of
any cut is roughly 3 = ©(1), so the flux of H (i.e., the flux of the minimum-flux cut in H) is ®(1/n).
We will now show that the optimum value of the linear program (P) is as low as ©@(1/nlogn),
which implies that its integrality gap is Q(logn).

Instead of finding the optimal value of (P), we find the optimal value of its dual. Recall that the
dual of sparsest cut is the maximum concurrent flow problem: we seek to find a set of flows whose
sum is feasible (i.e., respects capacity constraints) and the minimum flow value within this set is
maximized. Letting f, denote the flow value on path p, the LP formulation is the following:

(D): max A
E fp=A Vi,j
PEP;
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p:(ij)ep
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where P;; denotes the set of paths from vertex i to j. By strong duality, the optimal values of (P) and
(D) are equal, so now, our goal bound the optimal value of (D) on a the graph H by ©(logn).

Recall that with high probability, the maximum distance between any pair of vertices in H is
O(logn). Furthermore, it can be shown that many pairs are this far apart: there are ®(n?) pairs of
vertices that have a distance of ©(logn) from one another.

To support a flow of value A between these pairs, the total capacity of all edges must be at least
An?log n. However, the if each edge has unit capacity, then the total capacity in H is 3n. Therefore,
we must have A = 6(1/nlogn), so this is the optimal value of (D), as desired.

3 Summary
In this lecture, we showed that the integrality gap of the sparsest cut LP relaxation from Lecture 7

is Q(log n). Thus, any algorithm based on this LP cannot have a better approximation ratio than
O(logn). In the next lecture, we will use an SDP to overcome this barrier.
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