
COMPSCI 638: Graph Algorithms September 6, 2019

Lecture 4
Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In this lecture, we introduce a generalized version of the maximum flow problem known as the
multicommodity flow problem. To solve this problem, we present and analyze an algorithm given
by Garg and Könemann [GK07]. This algorithm illustrates a general class of algorithms known as
primal-dual algorithms.

2 Multicommodity Flow

The multicommodity flow problem generalizes the maximum flow problem to multiple source-sink
pairs. We are given a directed G = (V, E) with edge capacities u(e), as well as (si, ti) pairs for
i ∈ {1, . . . , k} for some k ≥ 1. Our objective is to find a feasible flow for every (si, ti) pair that
maximizes the total flow value in the network.

A False Reduction: Before we present today’s algorithm, consider the following “reduction” of
this problem to the maximum flow problem: add a “super” source x, a “super” sink y to the graph,
and all edges of the form (x, si) and (ti, y). In this new network, we can return a maximum x-y
flow in the new network. The problem with this reduction is that it might send flow from s1 to t2,
say, but any s1-t2 flow does not contribute to the actual objective value.

2.1 The LP and its Dual

Our algorithm for maximum multicommodity flow heavily relies on its LP formulation and its dual,
so we present those now. Note that they closely resemble the primal and dual LPs for maximum
flow presented in Lecture 2—we are simply extending the number of source-sink pairs to k ≥ 1.
We let Pi denote the set of si-ti paths, and we let P = ∪iPi denote the set of all such paths.

(P): max
k

∑
i=1

∑
p∈Pi

fp

k

∑
i=1

∑
p∈Pi :
e∈p

fp ≤ u(e) ∀e ∈ E

fp ≥ 0 ∀p ∈ P

4-1

And similarly, the dual of this LP is the following.

(D): min ∑
e∈E

u(e)`e

∑
e∈p

`e ≥ 1 ∀p ∈ P

`e ≥ 0 ∀e ∈ E

Recall that we interpret the `e variables as edge lengths: in the dual LP, our objective is to minimize
the total volume while ensuring that the distance from any source to its destination is at least one.

A polynomial-time algorithm: Before presenting the main algorithm of this lecture, we note
obtaining that a polynomial-time algorithm is fairly simple. To do this, we’ll need a separation oracle
for (D): this is an algorithm that, given a candidate solution ` for (D), verifies that ` is feasible or
returns a violated constraint. For our problem, this separation oracle computes the shortest path
according to ` for every source-sink pair. If all k shortest paths have length at least one, then ` is
feasible; otherwise, the shortest path gives a violated constraint.

With this separation oracle, we can use the ellipsoid algorithm for linear programming to solve
the maximum multicommodity flow problem in polynomial time. Unfortunately, the runtime of
this strategy is somewhat high, so we now turn our attention to a faster algorithm.

2.2 A Primal-Dual Algorithm

We now describe the algorithm for the maximum multicommodity flow problem given by Garg and
Könemann [GK07]. Note that this is algoritm is actually an approximation scheme: as part of the
input, we specify a constant ε ∈ (0, 1). The output of the algorithm is not necessarily a maximum
flow, but as we will show, its value is guaranteed to be at least (1− ε) times the maximum value.

Algorithm 1 (Garg and Könemann [GK07])

1: Initialize: f ← 0, `e ← δ ∀e ∈ E (for some δ determined in the analysis).
2: while ` is not feasible for the LP (D) do
3: p← shortest path in P under `
4: γ← mine∈p u(e)
5: g← flow sending γ units along p
6: f ← f + g
7: for e ∈ p do
8: `e ←

(
1 + ε γ

u(e)

)
`e

9: end for
10: end while

Now we shall prove three main properties of this algorithm: it terminates, the resulting flow is
feasible, and the resulting flow value is at least (1− ε) times the maximum flow value.

Lemma 1. Algorithm 1 terminates after at most m log1+ε

(1+ε
δ

)
iterations.

Proof. Consider the value of `e for some fixed edge e ∈ E. Whenever e gets saturated (i.e., some
augmenting flow sends u(e) units of flow along e), the value of `e increases by a factor of (1 + ε).

4-2

The initial value of `e is δ, and the final value is at most 1 + ε because the algorithm only increases
the `e values along the shortest path p. (If the shortest path length is at least 1+ ε, then the algorithm
would have terminated.)

Thus, the number of times an edge e can be saturated is at most the number of times δ can be
multiplied by a factor of (1 + ε) before it exceeds 1 + ε, which is log1+ε

(1+ε
δ

)
.

Since each iteration of the algorithm saturates at least one edge, the total number of iterations is
at most the total number of saturations, which is at most m log1+ε

(1+ε
δ

)
.

To simplify the presentation of the remaining proofs, we make the following assumption:

(1 + ε)∆ = 1 + ∆ · ε + ∆(∆− 1)
2!

ε2 + · · · ≈ 1 + ∆ · ε, (1)

where the equality follows from the Taylor series expansion of f (x) = (1 + x)∆ and the approxima-
tion follows from the fact that ε is a small constant.

Lemma 2. Scaling the flow from Algorithm 1 by 1/ log1+ε

(1+ε
δ

)
yields a feasible flow.

Proof. Let e be some fixed edge and consider the value of `e. By the assumption (1), when we send
γ units of flow through e, the value of `e increases by a factor of(

1 + ε
γ

u(e)

)
≈ (1 + ε)γ/u(e).

Thus, if we send fe = γ1 + γ2 + · · ·+ γj units of flow through e, then

`e ≈ δ(1 + ε)γ1/u(e) · · · (1 + ε)γj/u(e) = δ(1 + ε) fe/u(e) ≤ 1 + ε,

where the inequality again follows from the fact that the algorithm never extends an edge length
beyond 1 + ε. Rearranging the inequality above yields

fe ≤ ue · log1+ε

(
1 + ε

δ

)
,

so scaling the result by this factor indeed results in a feasible flow.

So now we know that Algorithm 1 terminates with a feasible flow. The last thing we must do is
relate the value of this flow to the value of the maximum flow by looking at the dual (D).

Theorem 3. The value of the scaled flow given by Algorithm 1 and Lemma 2 is at least (1− ε) times the
maximum flow value.

Proof. We begin with some notation: for any length function ` : E→ R≥0, we define D(`) as the
dual objective value obtained by ` and α(`) as the length of the shortest path in P under ` (i.e.,
the “most-violated” dual constraint value). Now observe that (D) is invariant under scaling: if
we multiply ` by some fixed scalar value, then the values of D(`) and α(`) are scaled by the same
scalar value. Thus, we can solving (D) is equivalent to minimizing D(`)/α(`) over all functions
` : E→ R≥0 without any constraints. Let β denote the optimal value of this reformulated problem.

4-3

Now let `0, `1, . . . , `t denote the length functions obtained when we run Algorithm 1, so that
`0(e) = δ for every e ∈ E and `t is a feasible dual solution. Fix i ∈ {1, . . . , t} and consider the length
function `i − `0. Recall that β is the minimum value of D(`)/α(`) over all length functions, so

β ≤ D(`i − `0)

α(`i − `0)
≤ D(`i)− D(`0)

α(`i)− δm
. (2)

Note that we have used the fact that D is a linear function, and α(`i − `0) ≥ α(`i)− δm because
reducing the length of every edge by δ cannot reduce the shortest path length by more than δm.

Consider the numerator of (2). For any iteration j, let pj denote the path we chose in step j (so
α(`j) is the length of pj under `j), and let γj denote the flow sent along pj. Then we have

D(`i) = D(`0) +
i−1

∑
j=0

∑
e∈pj

εγj

u(e)
· u(e)`(e) = D(`0) + ε

i−1

∑
j=0

γjα(`j). (3)

Substituting (3) into (2) yields

β ≤
ε ∑i−1

j=0 γjα(`j)

α(`i)− δm
. (4)

Now we focus on the denominator. Rearranging (4) yields

α(`i) ≤ δm +
ε

β

i−1

∑
j=0

γjαj.

To obtain a closed-form bound on αi, we assume the above inequality is tight (i.e., holds with
equality) and solve the resulting recurrence. More formally, we define xi so that the above inequality
holds with equality, i.e.,

xi = δm +
ε

β

i−1

∑
j=0

γjxj,

and we have α(`i) ≤ xi and x0 = δm. Now notice that we have a telescoping sum:

xi − xi−1 =
ε

β
γi−1xi−1,

and repeated applications of this equality gives us

xi =

(
1 +

ε

β
γi−1

)
xi−1

≈ (1 + ε)γi−1/βxi−1 (by the assumption (1))

≈ (1 + ε)γi−1/β(1 + ε)γi−2/βxi−2

...

= (1 + ε)∑i−1
j=0 γj/β

δm,

where the last line follows because x0 = δm. Since `t is a feasible solution to (D), we have

1 ≤ α(`t) ≤ xt = (1 + ε)| f |/βδm

4-4

where | f | denotes the flow value obtained by the algorithm before scaling. Once we account for the
scaling factor from Lemma 2, we see that the approximation ratio of Algorithm 1 is at least

| f |
log1+ε

(1+ε
δ

)
β
≥

log1+ε(1/δm)

log1+ε

(1+ε
δ

) .

By setting δ = (1 + ε)1−1/εm−1/ε, this quantity becomes 1− ε, as desired.

We conclude by emphasizing that Algorithm 1 does not rely on any specific properties of
network flows. In particular, there is no residual or admissible network. This illustrates a general
strategy for solving linear programs that resemble (P) and (D) (known as packing/covering LPs).
A similar technique can be used to solve the maximum concurrent flow problem, in which we seek
to maximize the minimum amount of flow between any source-sink pair.

3 Summary

In this lecture, we looked at the maximum multicommodity flow problem and an algorithm
developed by Garg and Könemann [GK07]. This is an approximation algorithm, and both the
algorithm and its analysis rely on linear program duality.

References

[GK07] Naveen Garg and Jochen Köenemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. SIAM Journal on Computing, 37(2):630–652,
2007.

4-5

	Overview
	Multicommodity Flow
	The LP and its Dual
	A Primal-Dual Algorithm

	Summary

