
COMPSCI 638: Graph Algorithms September 11, 2019

Lecture 5
Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In this lecture, we focus on the dual of the maximum multicommodity flow problem. This problem
is known as the multicut problem, and we present an approximation algorithm. Along the way, we
see a simpler algorithm for a special case known as the multiway cut problem.

2 The Multicut Problem

Let us recall the dual of the maximum multicommodity flow problem for undirected graphs. We are
given a graph G = (V, E) with edge costs (formerly capacities) c(e), and a set of source-sink pairs
(si, ti) for i ∈ {1, 2, . . . , k}. In the dual, we seek to find edge lengths that minimize the total volume
while separating every si-ti pair. Let Pi denote the set of si-ti paths, and let P be the union of Pi for
i = 1, . . . , k. Written as an LP, this problem is the following:

(D): min ∑
e∈E

c(e)`e

∑
e∈p

`e ≥ 1 ∀p ∈ P

`e ≥ 0 ∀e ∈ E

Now suppose we impose the integrality constraints, i.e., we now require `e ∈ {0, 1} for every e ∈ E.
The resulting problem is known as the multicut problem: we seek to find a minimum-cost subset of
edges whose removal separates every si-ti pair.

The multicut problem is NP-hard, which means there is little hope for a polynomial-time
algorithm. However, as we will see, we can obtain a fast approximation algorithm. But first, we
will first direct our attention to a special case known as the multiway cut problem.

2.1 The Multiway Cut Problem

In this problem, we are given an undirected graph G = (V, E), edge costs c(e) ≥ 0 for every e ∈ E,
and a set “terminals” s1, . . . , sk ∈ V. Our goal is to find a minimum-cost subset of edges whose
removal disconnects si from sj for every i 6= j.

Notice that this problem is a generalization of the minimum s-t cut problem (in which k = 2),
and the multicut problem is a generalization of this problem. Given a set of terminals for the
multiway cut problem, we can set every (si, sj) pair as a source-sink pair to obtain an equivalent
instance of the multicut problem.

Our algorithm for this problem is a natural extension of an algorithm for minimum s-t cut we
saw in Lecture 2. There are essentially just two differences: the random thershold is now chosen in
(0, 1/2) rather than (0, 1), and our output is union over all terminals.

5-1



Algorithm 1 A randomized algorithm for Multiway Cut

1: Solve the LP (D) to obtain `∗ : E→ R≥0
2: d(u, v)← shortest path distance from u to v under `∗

3: Choose r ∈ [0, 1/2) uniformly at random
4: for i = 1, . . . , k do
5: Si ← {v : d(si, v) ≤ r}
6: return ∪k

i=1δ(Si)

Theorem 1. Algorithm 1 is a 2-approximation for the multiway cut problem.

Proof. Let F be the output of Algorithm 1 and c(F) denote the (expected) cost of F. We first note
that F is feasible because, by the feasibility of `∗, we do not have any d(si, sj) ≤ r for any si 6= sj.

Now we also observe that the Si are pairwise disjoint due to the triangle inequality. Indeed, if
there exists u and si 6= sj such that d(si, u) ≤ r and d(sj, u) ≤ r, then d(si, sj) ≤ r + r ≤ 1, which
violates feasibility of `∗.

Using this, we can bound the probability that an edge (x, y) is in F. Since all of the Si are disjoint,
there are only two ways for this to happen: x is in Su for some u, or y is in Sv for some v. For the
former, we need r ∈ [d(su, x), 1/2) and for the latter, we need r ∈ [d(sv, y), 1/2). Thus, by the union
bound, we have

Pr((x, y) ∈ F) ≤ 1/2− d(su, x)
1/2

+
1/2− d(sv, y)

1/2
= 2(1− d(su, x)− d(sv, y)) ≤ 2d(x, y), (1)

where the final inequality follows from the triangle inequality and the fact that 1 ≤ d(su, sv).
We can now bound the expected cost of Algorithm 1. Let OPT denote the cost of the optimal

multiway cut solution. From (1) and the fact that `∗ is the optimal fractional solution, we have

c(F) = ∑
e∈E

c(e)Pr(e ∈ F) ≤ 2 ∑
e∈E

c(e)`∗e ≤ 2 ·OPT.

Remark: Although Algorithm 1 is simple and elegant, there are algorithms for multiway cut
with better guarantees. In particular, Călinescu et al. [CKR00] gave a 3/2-approximation which
works by embedding the vertices of the graph on a simplex with the terminals embedded into the
corners. And this isn’t the best approximation either—by using a technique known as exponential
clocks, Buchbinder et al. [BNS13] obtain a 4/3-approximation. Whether or not this is the best
approximation guarantee remains an open question.

2.2 The CKR Algorithm for Multicut

Now we turn our attention back to the multicut problem. Recall that we have k si-ti pairs, and we
must find a subset of edges that separates si from ti for every i ∈ {1, . . . , k}. Now let us establish
some notation: for any S ⊆ V, we let δ(S) denote the set of edges cut by S and I(S) denote the set
of edges with both endpoints in S. In other words, we have

δ(S) = {(u, v) ∈ E : u ∈ S, v 6∈ S}
I(S) = {(u, v) ∈ E : u, v ∈ S}.

5-2



We are now ready to state the algorithm for multicut given by Călinescu et al. [CKR05]. At a high
level, it is somewhat similar to Algorithm 1 for multiway cut: they both set a threshold r and
consider the vertices Si within a distance of r from each si and the set of edges δ(Si).

However, there are two key differences in Algorithm 2: the vertices are processed in a random
order, and not all of the edges crossing each Si are added to the solution. Instead, the algorithm
excludes the edges that are entirely within previously processed balls. It might seem that the
solution is no longer feasible, but we will see that this is not the case.

Algorithm 2 The CKR Algorithm for the Multicut problem

1: Solve the LP (D) to obtain `∗ : E→ R≥0
2: d(u, v)← shortest path distance from u to v under `∗

3: Choose r ∈ [0, 1/2) uniformly at random
4: Choose a permutation σ of {1, . . . , k} uniformly at random
5: for i = 1, . . . , k do
6: Sσ(i) ← {v : d(sσ(i), v) ≤ r}
7: Eσ(i) ← δ(Sσ(i)) \ ∪j<i I(Sσ(j))

8: return ∪k
i=1Ei

Lemma 2. The output of Algorithm 2 is a feasible multicut solution.

Proof. Let F denote the output of Algorithm 2, and for contradiction, suppose sσ(i) is connected to
tσ(i) for some i after the removal of F. Notice that when we remove Eσ(i), we disconnect sσ(i) from
V \ Sσ(i) except for possibly vertices in sets of the form Sσ(j) where j < i and sσ(i) ∈ Sσ(j). But by
the triangle inequality, tσ(i) cannot be in any such set (or d(si, ti) would be less than 1).

Now that we know the algorithm is feasible, we are ready to bound the approximation ratio
of Algorithm 2. But before we do so, we briefly motivate the reason Algorithm 2 fixes a random
permutation σ. Fix an edge (x, y) and suppose we had the following:

d(sk, x) = 0, d(sk−1, x) =
1
2k

, . . . , d(s1, x) =
k− 1

2k

d(sk, y) =
1
2k

, d(sk−1, y) =
2
2k

, . . . , d(s1, y) =
k

2k
.

If we process the terminals in the order s1, s2, . . . sk, then regardless of the value of r, the edge (x, y)
is cut (i.e., returned by Algorithm 2) with probability 1. This is clearly not a desirable outcome, but
we can rectify this by processing the terminals in reverse order. In this case, (x, y) is likely to be an
internal edge by the time the algorithm considers cutting it, so it is unlikely to get cut.

We now bound the approximation ratio of Algorithm 1. For any integer n ≥ 0, we let Hn denote
the n-th Harmonic number, defined as Hn = 1 + 1/2 + · · ·+ 1/n.

Theorem 3. Algorithm 2 is a 2Hk-approximation for the multicut problem.

Proof. Let F be the output of Algorithm 2, and fix an edge e = (x, y). Notice that it suffices to prove
Pr(e ∈ F) ≤ 2Hk · d(x, y); the rest of the proof is identical the that of Theorem 1.

5-3



Let Ai(x, y) denote the event (x, y) ∈ δ(Si) and let Bi(x, y) denote the event (x, y) 6∈ I(Sσ(j)) for
any j < i. Then (x, y) is in F if only if Ai(x, y) and Bi(x, y) for some i ∈ {1, . . . , k}. Applying the
union bound, we have the following:

Pr(e ∈ F) ≤
k

∑
i=1

Pr
(

Aσ(i)(x, y) ∧ Bi(x, y)
)

. (2)

Recall that the probability an (x, y) is cut by any Si, as we saw in the proof of Theorem 1, at most
2d(x, y). So for any i, we have

Pr
(

Aσ(i)(x, y)
)
≤ 2d(x, y). (3)

Furthermore, notice that Ai(x, y) only depends on the radius r, not the permutation σ. However,
the event Bi(x, y) depends on both r and σ, so Ai(x, y) and Bi(x, y) are not independent.

To circumvent this, let us suppose the events Aσ(i)(x, y) and Bi(x, y) first occur together at some
step i. Then (x, y) wasn’t in, or cut by, Sσ(j) for any j < i, so both endpoints of the edge (x, y) must
be outside Sσ(j). In particular, this means

d(sσ(i), x) < d(sσ(j), x) ∀j < i. (4)

Let Ci(x) denote the above event, so Ci(x) only depends on the permutation σ (not the radius r).
From the discussion above, we have

Pr
(

Aσ(i)(x, y) ∧ Bi(x, y)
)
≤ Pr

(
Aσ(i)(x, y) ∧ Ci(x)

)
= Pr

(
Aσ(i)(x, y)

)
· Pr(Ci(x))

≤ 2d(x, y) · Pr(Ci(x)),

where the equality follows from the independence of σ and r and the last line follows from (3).
We now show Pr(Ci(x)) ≤ 1/i for any i; for i = 1 this is trivially true. Let us consider i = 2: in

this case, σ must satisfy d(sσ(2), x) < d(sσ(1), x), and since σ is chosen uniformly at random, this
happens with probability 1/2. In general, we see that for Ci(x) to occur, σ must assign i so that
d(sσ(i), x) is the smallest among i distance values, and this happens with probability 1/i.

Putting this all together, we have

Pr(e ∈ F) ≤ 2d(x, y)
k

∑
i=1

Pr(Ci(x)) ≤ 2d(x, y)
k

∑
i=1

1
i
= 2Hk · d(x, y).

3 Summary

In this lecture, we saw a simple randomized rounding algorithm for the multiway cut problem,
a generalization of the minimum s-t cut problem. We also used some similar ideas to give an
O(log k)-approximation for the multicut problem, where k is the number of source-sink pairs.

5-4



References

[BNS13] Niv Buchbinder, Joseph Seffi Naor, and Roy Schwartz. Simplex partitioning via expo-
nential clocks and the multiway cut problem. In Proceedings of the forty-fifth annual ACM
symposium on Theory of computing, pages 535–544. ACM, 2013.

[CKR00] Gruia Călinescu, Howard Karloff, and Yuval Rabani. An improved approximation
algorithm for multiway cut. Journal of Computer and System Sciences, 60(3):564–574, 2000.

[CKR05] Gruia Călinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for the
0-extension problem. SIAM Journal on Computing, 34(2):358–372, 2005.

5-5


	Overview
	The Multicut Problem
	The Multiway Cut Problem
	The CKR Algorithm for Multicut

	Summary

