
Nearest Neighbor Predictors

August 17, 2021

Perhaps the simplest machine learning prediction method, from a conceptual point of view,
and perhaps also the most unusual, is the nearest-neighbor method, which can be used for either
classification or regression.

This method simply remembers the entire training set

T = {(x1, y1), . . . , (xN , yN )} ,

regardless of whether the targets yn are labels (for classification) or values (for regression). At test
time, when given a new data point x in the data space X, the nearest-neighbor predictor returns
the target yn corresponding to the training data point xn that is closest to x.

Determining what is “closest” requires to define some distance in the data spaceX. For example,

∆(x,x′) = ‖x− x′‖2 ,

the squared Euclidean distance. The classifier is then

h(x) = yν(x) where ν(x) = arg min
n=1,...,N

∆(x,xn) .

In words: To find the target y = h(x) for a new data point x, find the index n = ν(x) of the
training data point xn that is closest to x and return the target yn for that training sample.

There is no distinction between classification and regression here: If Y is categorical, h returns
a label, and is therefore a classifier. Otherwise, h returns a value (anything indeed: a single real
number, a vector in any space,. . .), and is therefore a regressor. In addition, the number of classes
is irrelevant for nearest-neighbor classification: Y can have any number of elements.

A first unusual property of the nearest-neighbor predictor is that training takes no time and
inference (computing the target of h(x) for a given x) is slow: In a naive implementation, computing
the arg minn requires comparing x with all the training data points xn, so the time required for
inference is linear in N , the size of the training set. The more data are available in T , the slower
inference will be. This behavior is the opposite of that of most machine learning methods, which
take a possibly long training time and are usually fast at inference time (or, at least, their inference
time does not depend on the size of T ).

In practice, one can do better than linear-time during inference by building a data structure
(typically based on R-trees or k-d trees or locality-sensitive hashing schemes) to store T . This
construction requires time initially, but the investment is worth the price if the predictor is used
many times, since then finding the nearest neighbor to x is typically fast. Theoretically, building
an exact nearest-neighbor search structure is an NP-hard problem. However, practically efficient
implementations exist at the cost of some approximation.

1



For instance, rather than obtaining the closest sample, some of these implementations guarantee
that a sample within 1 + ε of closest is returned, for a given ε > 0. This means that if the truly
nearest sample to x is xν∗(x) but h returns the target yν(x) associated to xν(x) instead, then

∆(x,xν(x)) < (1 + ε) ∆(x,xν∗(x)) .

In words, the distance between x and xν(x) is never more than 1 + ε times the distance between
x and the nearest training data point. One can pick any ε strictly greater than zero: the closer ε
is to zero, the more it takes to construct the data structure, and the more storage space it takes.
With these data structures, if one is willing to accept the 1 + ε approximation, the typical situation
is restored: Building the data structure can be considered as part of “training time,” which is now
long, and testing the predictor is comparatively fast.

Incidentally, small approximations are often entirely acceptable in this type of problems. This
is because the particular notion of distance chosen is often a crude way to capture “dissimilarity”
(what is so special about the Euclidean distance anyway?) and a small discrepancy when looking for
the nearest point to x is often negligible when compared to the looseness in the choice of distance.

In few dimensions, perhaps d = 2, 3, one can build an exact data structure called the Voronoi
diagram: Partition space into convex regions that are either polygons (in 2D) or polyhedra (in 3D),
one region Vn for each data point xn. The defining property of Vn is that any point x ∈ Vn is closer
to xn than it is to any other training data point. Figure 1(a) illustrates this concept for a subset of
the data in a set introduced in a previous note.1 If we only draw the edges between Voronoi regions
that belong to data points with different targets, we obtain the partition that the nearest-neighbor
predictor induces in the data space X, as shown by the black lines in Figure 1(b).

The Voronoi diagram is a purely conceptual construction for nearest-neighbor predictors when
the data space has more than a handful of dimensions: While this construction would lead to an
efficient predictor for new data points x, it is rare that data space is two- or three-dimensional
in typical classification or regression problems. The Voronoi diagram is a well-defined concept in
more dimensions, but there is no known efficient algorithm to construct it. Instead, the approximate
algorithms mentioned earlier are used for prediction when both d (the dimensionality of X) and N
(the number of training samples) are very large. When d is large but N is not, the nearest neighbor
of x can be found efficiently by a linear scan of all the elements in the training set.

For regression, each Voronoi region has in general a different value yn, so the hypothesis space
H of all functions that the nearest-neighbor regressor can represent is the set of all real-valued
functions that are piecewise constant over Voronoi-like regions.

Overfitting and k-Nearest Neighbors

It should be clear from both concept and Figure 1 that nearest-neighbor predictors can represent
functions (for regression) or class boundaries (for classification) of arbitrary complexity, as long as
the training set T is large enough. In light of our previous discussions, it should also be clear that
this high degree of expressiveness of H is not necessarily a good thing, as it can lead to overfitting:
For instance, for binary classification, the exact boundary between the two classes will follow the
vagaries of the exact placement of data points that are near other data points of the opposite class.

1A subset of the data is used to make the figure more legible. There would be no problem in computing the
Voronoi diagram for the whole set.

2



(a) (b)

Figure 1: (a) The black lines are the edges of the Voronoi diagram of the sample points (blue
circles and red squares), considered with no regard to their label values. Each cell (polygon) of
the Voronoi diagram is subsequently colored in the color corresponding to the label of the training
sample in it. The red and blue regions are the two subsets of the partition of data space X into
sets corresponding to the two classes. Any new data point x in the red region is classified as a red
square. Any other data point is classified as a blue circle. (b) The black lines trace the boundary
between the two sets of the partition.

3



Even the simple example in Figure 1(b) should convince you that a slightly different choice of
training data would lead to quite different boundaries.

More explicitly, Figure 2 shows the boundaries defined by the nearest-neighbor classifiers for
(a) a training set T with 200 points and (b-f) five random samples of 40 out of the 200 points in
T . There is clearly quite a bit of variance in the results, and rather than drawing a boundary that
somehow captures the bulk of the point distributions, each nearest-neighbor classifier follows every
twist and turn of the complicated space between blue circles and red squares. This is an example
of overfitting.

The notion of k-nearest-neighbors is introduced to control overfitting to some extent, where k
is a positive integer. Rather that returning the value yn of the training sample whose data point
xn is nearest to the new data point x, the k-nearest-neighbors regressor returns the average (or
sometimes the median) of the values for the k data points that are nearest to x. The k-nearest-
neighbors classifier, on the other hand, returns the majority of the labels for the k data points that
are nearest to x. For classification, it is customary to set k to an odd value, so that the concept of
‘majority’ requires no tie-breaking rule.

As an example, Figure 3 draws approximate decision regions for the same data sets as in Figure
2, but using a 9-nearest-neighbors classifier rather than a 1-nearest-neighbor classifier. The variance
in the boundaries between regions is now smaller. In some sense, the 9-nearest-neighbors classifier
captures more of the “gist” of the two point distributions in some neighborhood of data space, and
less of the fine detail along the boundary between them. The 9-nearest-neighbors classifier overfits
less than the 1-nearest-neighbors classifier.

Figure 4 (b) illustrates k-nearest-neighbors regression in one dimension, d = 1 for the dataset
in panel (a) of the Figure. The regressor uses Euclidean distance and summarizes with the mean.
The line for k = 1 (orange) overfits dramatically, as it interpolates each data point. The line for
k = 100 does quite a bit of smoothing, and reduces overfitting.

Points for Further Exploration

Some of the following questions will be explored later in the course. Others will be covered in some
of the homework assignments. The rest are left for you to muse about.

• How to choose the metric ∆ for a particular regression or classification task? For instance, if
some features (entries of x) are irrelevant but vary widely, they may limit the usefulness of a
metric that includes them.

• Will ∆ be informative in many dimensions, given our discussion on distances when d is high?
This point is related to the previous one.

• How to choose k?

• Is it fruitful to think of weighted averaging in a k-nearest-neighbors regressor? Weights might
help modulate the trade-off between accuracy (small k) and generalization (large k).

• What applications does k-nearest-neighbors prediction suit best? Training is easy, and can
be done incrementally (just add new data to T ), but inference is potentially expensive.

4



(a) (b)

(c) (d)

(e) (f)

Figure 2: (a) The decision boundary of the nearest-neighbor classifier for a training set T with
200 points, 100 points per class. (b-f) The decision boundary of the nearest-neighbor classifier for
five sets of 40 points (20 per class) each, drawn randomly out of T . As a programming alternative
(which works for any classifier when d = 2), these regions were approximated by creating a dense
grid of points on the plane, classifying each point on the grid, and placing a small square of the
proper color at that grid point. 5



(a) (b)

(c) (d)

(e) (f)

Figure 3: (a-f) The approximate decision regions of the 9-nearest-neighbor classifier for the same
training sets as in Figure 2.

6



0 1000 2000 3000 4000 5000 6000

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000
0

100

200

300

400

500

600

700

800

k = 1

k = 10

k = 100

(a) (b)

Figure 4: (a) The horizontal axis denotes the gross living area in square feet of a set of 1379 homes
in Ames, Iowa. The vertical axis is the sale price in thousands of dollars [1]. (b) An example
of k-nearest-neighbor regression on the data in (a). The three lines are the k-nearest-neighbor
regression plots for k = 1, 10, 100.

References

[1] D. De Cock. Ames, Iowa: Alternative to the Boston housing data as an end of semester
regression project. Journal of Statistics Education, 19(3), 2011.

7


