A CRITI®UE 0 F

THE S 0 L DATABASE LANGUAGE

C.J.Date
FO Box 2647, Saratoga
California 93070, USA

December 1983

Abstract

The ANMS Database Committee (X3H2) is currently at work on a
proposed standard relational database language (RDL), and has
adopted as & basis for that activity a definition of the
"structured query language" S@L from IBM [10]1. Moreover, numerocus
hardware and software vendors (in addition to IEM) have already
released or at least announced products that are based to a
greater or lesser extent on the S0L language as defined by IEM.
There can thus be little doubt that the importance of that
language will increase significantly over the next few vears. Yet
the S0L language is very far from perfect. The purpose of this
paper is to present a critical analysis of the language™s major
shortcomings, in the hope that it may be possible to remedy some
of the deficiencies before their influence becomes too all-
pervasive. The paper’s standpoint is primarily that of formal
computer languages in general, rather than that of database
languages specifically.

sql critigue

1. INTRODUCTION

The relational language SOL (the acronym is usually pronounced
"sequel"), pioneered in the IBM prototype System R [11 and
subsequently adopted by IBM and others as the basis for numerous
commercial implementations, represents a major advance over older
database languages such as the DL/I lanqguage of IMS and the DML
and DDL of the Data Base Task Group {DETG) of CODASYL.
Specifically, S, is far easier to use than those older
languages; as a result, users in & 86L system (both end-users
and application programmers) can be far more productive than they
used to be in those older systems (improvements of up to 20 times
have been reported). Among the strongpoints of 50L that lead to
such improvements we may cite the following:

¥ simple data structure
¥ powerful aoperators
¥ short initial learning period
¥ improved data independence
¥ integrated data definition and data manipulation
¥ double mode of use
¥ integrated catalog
¥ compilation and optimization
These advantages are elaborated in the appendix to this paper.

The language does have its weak points too, however. In fact, it
cannot be denied that SOL in its present form leaves rather a lot
to be desired -— even that, in some important respects, it fails
to realize the full potential of the relational model. The
purpose of this paper is to describe and examine some of those
weak points, in the hope that such aspects of the language may be
improved before their influence becomes too all-pervasive.

Before getting into details, I should like to make one point
absolutely clear: The criticisms that follow should not be
construed as criticisms of the original designers and
implementers of the SOL language. The paper is intended solely as
a critigque of the SOL language as such, and nothing more. Note
also that the paper applies specifically to the dialect of SOL
implemented by IBM in its products SOL/DS, DR2, and GQMF. It is
entirely possible that some specific point does not apply to some
other implemented dialect. However, most points of the paper do
apply to most of the dialects currently implemented, so far as 1
am IWIIre.

The remainder of the paper is divided into the following

sql critique

sections:
¥ lack of orthogonality: expressions
¥ lack of orthogonality: builtin functions
¥ lack of orthogonality: miscellaneous items
¥ formal definition
¥ mismatch with host languages
¥ missing function
¥ mistakes
¥ aspects of the relational model not supported
¥ summary and conclusions

Reference [3] gives some background material —— sgpecifically, a
set of principles that apply to the design of programming
languages in general and database languages in particular. Many
of the criticisms that follow are expressed in terms of those
principles. Note: Some of the points apply to interactive SOL
only and some to embedded SGL only, but most apply to both. I
have not bothered to spell out the distinctionsy the context
makes it clear in every case. Also, the structure of the paper is
a little arbitrary, in the sense that it is not really always
clear which heading a particular point belongs under. There 1is
also some repetition (I hope not too much), for essentially the
sSame reason.

50l critique 10

2. LACK OF ORTHOGONALITY: EXFRESSIONS

It is convenient to begin by introducing some nonStll terms.

¥ A table-expression is a S8L expression that yields a table ——
for example, the expression

SELECT x
FROM EMF
WHERE DEPTH# = °D3I7

¥ A column-expression is a SOL expression that yields a single
column —— for example, the expression

SELECT EMFP#
FROM EMF
WHERE DEFTH# = "D3I°

A column—-expression is & special case of a table-expression.

X A row-expression is a S50L expression that yields a single row
—— for example, the expression

SELECT X
FROM EMP
WHERE EMP# = “E2°

A row—-expression is a special case of a table-expression.

¥ A scalar—expression is a S0L expression that yields a single
scalar value —— for example, the expression

SELECT AVG (SALARY)
FROM EMF

or the expression

SELECT SALARY
FROM EMF
WHERE EMP# = "EZ2°

A scalar-expression is a special case of a row-expression and a
special case of a column-expression.

Note that these four kinds of expression correspond to the four
classes of data object (table., column, row, scalar) supported by
S@t. -- though incidentally S0L is inconsistent as to whether its
expressions yield values or references, in general. Note too that
{as pointed out in [31) the four classes of object can be
partially ordered as follows:

sl critigue 11

table {(highest)

column "

—— < -
)

o~ L -

scal ar lowest)

(columns are neither higher nor lower than rows with respect to
this ordering?.

As explained in [31 (again), & language should provide, for each
class of object it supports, at least all of the following:

¥ a constructor function, i.e., a means for constructing an
object of the class from literal {constant) values and/or
variables of lower classes;

¥ a means for comparing two objects of the class;

¥ & means for assigning the value of one object in the class
to another;

¥ a selector function, i.e., a means for extracting component
objects of lower classes from an object of the given class;:

¥ a general, recursively defined syntax for expressions that
exploits to the full any closure properties the object class

may pPOSSessS.

The table below shows that SOL does rnot really measuwre up to
these requirements.

sl critique 12

i N oapn | constructor | compare | assign i selector | gen '
ioobiN ' :]] oexpr |
! A i H H : i
et e e e o e e oo e e e e e e o e e e e o o e e e e o e e '
: H i i only via | Pono :
i table | no : no ¢ INSERT — ves | (see |
' ! ' ! SELECT : ibelaw) i
e e e e o o T e T e e et H
! i i only as arg to! ; ! i :
i column | IN {(host vbles! rno : no i veas vono i
i i % consts only) ! i i : i
R o o e e o o e s e e o s e o e e et e e et e o o v s ot e e e e e e e e e s e e o o e e e H
: i only in INSERT! i only to/ | H :
iorow i % UPDATE (hasti no i from set | (yes) i no |
: i vbles & constsi v of host i i i
H i only) : i scalars : i
P e e o e e e o o e e e e o o e e e e e e e e !
H i H ioonly to/ ! i
1 scalar M/A : ves i from hosti {yes) Vono
! H ' i scalar : i i

e e b v Sareh e oo Boons S0004 St fma Siots eLNS Shbte Seete Smvem moet 1o Coese S0 o e fabm fadee MMHUR Sl Sommt S8e83 St et PAAOS S SSAem $0440 PSS PSS SeSed S Ses Y OO e e Semes SLONH HeSLS SemSe S rres S bves S0 SRR S4408 S $9HR MAns Sebes Seam Spens Bevap S0

Let us consider table-expressions in more detail. The SELECT
statement, which, since it yields a table, may be regarded as a
table-expression {(possibly of a degenerate form, e.g., as a
column-—-expression), currently has the tollowing structure:

SELECT scalar-—-expression—-commalist
FROM table—-name—-commalist
WHERE predicate

(ignoring numerous irrelevant details). Notice that it is just
table-names that appear in the FROM clause. Completeness suggests
that it should be table-expressions (as Gray puts it L[813,
Yanything in computer science that is not recursive is no good").
This is not just an academic consideration, by the way;y on the
contrary, there are several practical reasons as to why such
recursiveness is desirable.

X First, consider the relational algebra. Relational algebra
possesses the important property of closure -—-- that is,
relations form a closed system under the operations of the
algebira, in the sense that the result of applying any of those
operations to any relation(s) is itself another relation. As a
consequence, the operands of any given operation atre not
constirained to be real ("base") relations only, but rather can
be any algebraic expression. Thus, the relational algebra
allows the user to write nested relational expressions —— and
this feature is useful for precisely the same reasons that
nested expressions are useful in ordinary arithmetic.

¥ Now consider S8L. &SOL is a language that supports, directly
or indirectly, &ll the operations of the relational algebra

=0l critigue 13

(i.e., S50L is relationally complete). However, the table-—
expressions of SCL {which are the S6L. eqguivalent of the
expressions of the relational algebra) cannot be arbitrarily
nested. Let us consider the question of esactly which cases
SEL does support. Simplifying matters slightly, the expression
SELECT -~ FROM -~ WHERE is the S0L version of the nested
algebraic expression

projection (restriction (product (tablei, tablel, ...)))

(the product corresponds to the FROM clause, the restriction
to the WHERE clause, and the projection to the SELECT clause;
tablel, table2, «... are the tables identified in the FROM
clause —— and note that, as remarked earlier, these are simple
table-names, not more complex expressions). Likewise, the
edpression

SELECT ... FROM ... WHERE ...
UNION
SELECT ... FROM ... WHERE ...

is the S50L version of the nested algebraic expression
union (tabexpl, tabexp2, ...)

where tabexpl, tabexp2, ce. are in twn table-expressions of
the form shown earlier {(i.e., projections of restrictions of
products of named tables). But it is not possible to formulate
direct equivalents of any other nested algebraic expressions.
Thus, for example, it is not possible to write a direct
equivalent in S0L of the nested expression

restriction (projection (table))

Instead, the user has to recast the expression into a
semantically equivalent (but syntactically different) form in
which the restriction is applied before the projection. What
this means in practical terms is that the user may have to

expend time and effort transforming the "natural” formulation
of a given query into some different, and arguably less
"natural®, representation (see Example below). What is more,

the user is therefore also required to understand exactly when
such transformations are valid. This may not always be
intuitively obvious. For example, is a projection of a union
always equivalent to the union of two projections?

Example: Given the two tables

NYC (EMF#, DEFT#, SALARY)
SFO (EMF#, DEPTH#, SALARY)

(representing New York and San Francisco employees,
respectively), list EMPH# for all employees.

sl critique 14

"Natural" formulation (projection of a union):
SELECT EMFP# FROM (NYC UNION SFO)
S0L formulation (union of two projections):

SELECT EMPH# FROM NYC
UNION
SELECT EMP# FROM SFO

We remark in passing that allowing both formulations of the
guery would enable different users to perceive and express the
same problem in different ways (ideally, of course, both
formulations would translate to the same internal
representation, for otherwise the choice between the two would
no longer be arbitrary).

¥ The foregoing example tacitly makes use of the fact that a
simple table-reference (i.e., a table-name) ought to be just a
special case of a general table-expression. Thus we wrote

NYD UNION SFO
instead of
SELECT x FROM NYC UNION SELECT % FROM SFO .

which current SOL would require. It would be highly desirable
for Sl to allow the expression "SELECT x FROM T" to be
replaced by simply "T" wherever it appears, in the stvyle of
more conventional languages. In other words, SELECT should be
regarded as a statement whose function is to retrieve a table
(represented by a table-expression). Table-expressions per se
-~ in particular, nested table-expressions -- should not
require the "SELECT % FROM". Among other things this change
would improve the usability of the EXISTS builtin function
(see later). It would also be clear that INTO and ORDER RY are
clauses of the SELECT statement and not part of a table— (or
column-) expression; the question of whether they can appear
in & nested expression would then simply not arise, thus
avoiding the need for a rule that looks arbitrary but is in
fact not.

¥ A nested table—eupression is permitted — in fact required
== in current 8@l as the argument to EXISTS (but strangely
enough not as the argument to the other builtin functions;
this point is discussed in the next section). Nested column-
expressions ("subgueries") are (&) required with the "ANYY and

"ALLY operators (includes the IN operator, which is just =&
different spelling for =ANY); and (b)) permitted with scalar
comparison operators (4, e =, etc.), if and only if the

column—-expression vields & column having at most one row.
Mareover, the nested expression is allowed to include GROUF RY
and HAVING in case (&) but not in case {b). More
arbitrariness.

sl critique 15

¥ Elsewhere I have proposed some extensions to S0L to support
the outer join operation [41. The details of that proposal do
not concern us here; what does concern us is the following. If
the user needs to compute an outer join of three or more
relations, then {a) that outer join 1is constructed by
pertorming & sequence of binary outer joins =1« join
relations A and B, then join the result and relation C); and
{b) it is essential that the user indicate the sequence in
which those binary joins are performed, because different
sequences will produce different results, in general.
Indicating the reqguired sequence is done, precisely, by
writing a suitable nested expression. Thus, nested expressions
are essential 1+ S6OL is to provide direct {(i.e., single-—
statement) support for general outer joins of more than two
relations.

¥ Another example (involving outer join again): FPart of the
proposal for supporting outer join [41 involves the use of a
new clause, the FPRESERVE clause, whose function is to preserve
rows from the indicated table that would not otherwise
participate in the result of the SELECT. Consider the tables

COURSE ¢ COURSE#, SUBJECT)
OFFERING (COURSE#, OFF#, LOCATION)

and consider the query "List all algebra couwrses, with their
offerings if any". The two SELECT statements following
(neither of which is wvalid in current S0OL, of course)
represent two attempts to formulate this guery:

SELECT ALGEBRA. COURSE#, OFF#, LOCATION
FROM (SELECT COURSE#
FROM COURSE
WHERE SURJECT = “Algebra®) ALGERRA, OFFERING
WHERE ALGEEBRA. COURSE# = OFFERING.COURSE#
FRESERVE ALGEBRA

SELECT COURSE. COURSE#, OFF#, LOCATION

FROM COURBE, OFFERING
WHERE COURSE. COURSE# = OFFERING.COURSE#
AND SUBRJECT = “Algebra’

FRESERVE COURSE

Each of these statements does list all algebra courses,
together with their offerings, for all such courses that do
have any offerings. The first also lists algebra courses that
do not have any offerings, concatenated with null values in
the OFFERING positions; i.e.. it preserves information +for
those couwrses (note the introduced name ALGERRA, which is used
to refer to the result of evaluating the inner expression).
The second, by contrast, preserves information not only for
algebra courses with no offerings, but alsg for all courses
for which the subject is not algebra (regardless of whether
those courses have any offerings or not). In other words, the

sql critique

16

firet preserves information for algebra courses only {as
required), the second produces a lot of unnecessary output.
And note that the first cannot even be formulated (as a single
statement) if nested expressions are not supported.

¥ In fact, SOl does already support nested expressions in a
kind of "under the covers' sense. Consider the following
example:
Base table:

S (S#, SNAME, STATUS, CITY)

View detinitions:

CREATE VIEW LONDON SUFFLIERS
AS SELECT S#, SNAME, STATUS

FROM 5
WHERE CITY = “London”
Puery () :
SELECT X

FROM LONDON_SUPPL IERS
WHERE STATUS > S0

Resulting SELECT statement (&7):

SELECT S#, SNAME, STATUS

FROM s
WHERE STATUS > 50
AND CITY = “London®

The SELECT statement 07 is obtained from the original guery ©
by a process usually described as "merging" —— statement @ is
"merged"” with the SELECT in the view definition to produce
statement 6°. To the naive user this looks a little bit like
magic. But in fact what is going on is simply that the
reference to LONDON_SUPFLIERS in the FROM clause in 0 is being
replaced by the expression that defines LONDON_SUFFPLIERS, as
follows:

SELECT x
FROM (SELECT S#, SNAME, STATUS
FrROM s
WHERE CITY = “London”®)
WHERE STATUS > 30

This explanation, though both accurate and easy to understand,
cannot conveniently be used in describing or teaching 806L,
precisely because SO0L does not support nesting at the esternal
aor user's level.

¥ UNION is not permitted in a subquery, and hence {(among other
things) cannot be used in the definition of a view (although

sqgl critique 17

strangely enough it can be used to define the scope for a
cursor in embedded SGL). So a view cannot be “"any derivable
relation", and the relational clasure property breaks down.
Likewise, INSERT ... SELECT cannot be used to assign the union
of two relations to another relation. Yet another consequence
of the special treatment given to UNION is that it is not
possible to apply a builtin function such as AVG to a union.
See the following section.

We conclude this discussion of SOL expressions by noting a few
additional (and apparently arbitrary) restrictions.

¥ The predicate ©C BETWEEN A AND B 1is equivalent to the
predicate A <= £ AND C <= B —— except that B (but not A or C!)

can be a column-—-expression {subquery) in the second
formulation but not in the first.

¥ The predicate "field comparison (subguery)" must be written
in the order shown and not the other way around; L., the

expression "(subquery) comparison field" is illegal.

¥ If we regard SELECT, UPDATE, and INSERT all as special kinds

of assignment statement -- in each case, the value of some
expression is being assigned to some variable (a newly created
variable, in the case of INSERT) -—- then source values for

those assignments can be specified as scalar-expressions
(involving database fields, host variables, constants, and
scalar operators) for SELECT and UFDATE, but must be specified
as simple host variables or constants for INSERT. Thus, for
example, the following is valid:

SELECT 2% + 1
FROM T

and so is:

UFDATE T
SET F=13:1X+1

but the following is not:

INSERT INTO T

¢ F
VALUES (=

X + 1)
¥ Given the tableg:

S (S#, SNAME, STATUS, CITY)
F (FP#, PNAME, COLOR, WEIGHT, CITY)

the SELECT statement

sgl critique 18

SELECT COLOR
FROM F
WHERE CITY =
(SELECT CITY
FROM F
WHERE P# = "P1°)

is legal, but the UFDATE statement

UFDATE F
SET COLOR = “ERlue”
WHERE CITY =
{ SELECT CITY
FROM F
WHERE FP# = °“F1°)

is not. Worse, neither is the UFPDATE statement

UPDATE F
SET CITY =
(SELECT CITY
FROM 8
WHERE GS# = °"81°)
WHERE ...

Even worse, given:

EMP (EMF#, SALARY)
BONUSES (EMF#, BONUS)

the following {(potentially very useful) UFDATE is also
illegal:

UFDATE EMP
SET SALARY = SALARY + (SELECT BRONUS
FROM BONUS
WHERE EMP# = EMF.EMFH#)

(Actually there 1is a slight problem in this last example.
Suppose a given employee number, say e, appears in the EMF
table but not in the BONUSES table. Then the parenthesized
expression will evaluate to null for emplovee e, and the
UFDATE will therefore set e’s salary to null as well -—-
whereas what 1s wanted is clearly for e’s salary to remain
unchanged. To fix this problem, we need to replace the
parenthesized expression by (sayv)

ROW_MAX ¢ (SELECT BONUS ... EMP.EMP# > , O)

where ROW_MAX is a function that operates by (&) ignoring any
of its arguments that evaluate to null and then (b) returning
the maximum of those that are left, if any, or null otherwise.
Mote that ROW_MAX is different in kind from the builtin
functions currently provided in S -— it is in fact a scalar-
valued function, whose arguments are scalar—expressions.)

sql critique

19

Z. LACE OF ORTHOGONALITY: BUILTIN FUNMCTIONS

Frankly, there is so much confusion in this area that 1t is
difficult to criticize it coherently. The basic point, however,
ig that the argument to a function such as SUM is a column of
scalar wvalues and the result is a single scalar value; hence,
orthogonality dictates that {(a) any column—expression should be
permitted as the argument, and (b) the function-reference should
be permitted in any context in which a scalar can appear.
However, (a) the argument is in fact specified in a most

unorthodox manner, which means in turn that {h) function
references can actually appear only in & very small set of
special ~case situations. In particular, function—-references
cannot appesar nested inside other function-references. In

addition to this fact, functions are subject to a large number of
peculiar and apparently arbitrary restrictions.

Before getting into details, we should point out that S0L in fact
supports two distinct categories of function, not however in any
uniform syntactic style. We refer to the two categories
informally as c¢olumn and table functions, respectively. We
discuss each in turn.

Column function

i

Column functions are the ones that one usually thinks of whenever
functions are mentioned in connexion with SOL. A column function
is a function that reduces an entire column of scalar values to a
single value. The functions in this category are COUNT (excluding
COUNT (%)), SUM, AVG, MAX, and MIN. A functional notation is used
to represent these functions; however, as suggested above, the
scoping rules for representing the argument are somewhat
unconventional. Consider the following database (suppliers and
parts):

S (S#, SNAME, STATUS, CITY)
P (P#, PNAME, COLOR, WEIGHT, CITY)
SF (S#, F#, OTY)

and consider also the following guery:

SELECT SUM (@TY)
FROM SF

The argument to SUM here is in fact the entire column of @QTY
values in table SP, and a more conventional representation would
accordingly be:

SUM ¢ SELECT QTY
FROM sF)

(though once again the keyword SELECT seems rather obtrusive; QTY
FrROM SF, or -—— even better —— simply S5F.0OTY, would be more
orthodox). As another example, the qguery:

sql critique 20

SEL.ECT SUM (QTY)
FROM SF
WHERE FP# = "P2°

would more conventionally be represented as

SUM { SELECT OTY
FROM SF
WHERE F# = "F27)

or {(better) as:
SUM (SP.ATY WHERE SF.F# = “F2°)

As 1t is,. the argument has to be determined by reference to the
context. An immediate consequence of this fact is that a qguery
such as "Find parts supplied in a total guantity of more than
1000Y cannot be expressed in a natural stvle. First, the syntax:

SELECT P#
FROM SF
WHERE SUM (BTY) > 1000

clearly does not work, either with S0L°s rules for argument scope

or with any other rules. The most logical formulation (but
retaining a SGL—-like style) is:

SELECT DISTINCT SFX.F#
FROM SF SPX
WHERE SUM (SELECT G7TY
FROM 8SF SFPY
WHERE GSFY.F# = SPX.F#)
> 1000

(The DISTINCT is required because of S80L°s rules concerning
duplicate elimination.) However, the normal SEL formulation would
be:

SELECT F#

FROM sF

GROUF RBRY P#

HAVING SuUM ((@TY) > 1000

Mote that the user is not really interested in grouping per se in
this query; by writing GROUF BY, he or she is in effect telling
the system how to execute the gquery, which is counter to the
general philosophy of the relational model. To put this another
way, the statement begins to look more like a prescription for
solving the problem, rather than & simple description of what the
problem is.

More important, it is necessary to introduce the HAVING clause,
the justification for which is not immediately apparent to the
user ("Why can™t T use a WHERE clause?"). The HAVING clause —-

zql critigue 21

argumggg Scogzng rules. As a “matter of fact, it is‘possible to
produce a SOL formulation of this example that does not use GROUF
BY or HAVING at all, and is fairly close to "the most logical

formul ation" suggested earlier:

SELECT DISTINCT F#
FROM SF SPX
WHERE 1000 <
{ SELECT SUM (QTY)
FROM 8SF BFY
WHERE SFY.F# = SPX.F#)

As mentioned earlier, current 50L requires the predicate in the
outer WHERE clause to be written as shown (i.e., in the order
"constant ~ comparison - (subguery)", instead of the other way
around) .

An important consequence of all of the foregoing is that §EL
cannot support arbitrary retrievals on arbitrary views. Consider
the following example.

View definition:

CREATE VIEW FQ ¢ F#, TOTATY)
AS SELECT P#, SUM (OTY)
FROM spP
GROUF BY F#

Attempted query:

SELECT %
FROM FQ
WHERE TOTGTY > 1000

This query Fails (it is syntactically invalid), because the
"merging” process described earlier leads to something like the
following:

SELECT F#, S5UM (GTY)
FROM 8F

WHERE SuUM (&ITY) > 1000
GROUF RY F#

and this is not a legal SELECT statement. Lilkewise, the attempted
querys

SELECT AVG (TOTATY)
FROM Fe

also does not work, for similar reasons.

The following is another striking example of the unobviousness of
the scoping rules. Consider the following two queries:

50l critique

22

SELECT SUM (QITY) SELECT SuUM (BTY)
FROM SF FROM sF
GROUF BY FP#

In the first case, the query returns a single value; the argument
to the SUM invocation is the entire OTY column. In the second
case, the gquery returns multiple values; the 5UM function is
invoked multiple times, once for each of the groups created by
the GROUFP BY clause. Notice how the meaning of the syntactic
construct "SUM{EATY)" is dependent on context. In fact, SOL is
moving out of the strict tabular framework of the relational
madel in this second example and introducing & new kind of data
obiject, viz. a set of tables (which is of course not the same
thing as a table at all). GBROUF BY converts a table into a set of
tables. In the example, 5UM is then applied to (a column within)
each member of that set. A more logical syntax might look
something like the following:

APFLY (SUM, SELECT GTY
FROM (GROUF SF RY P#))

where "GROUF SF RY FP#" produces the set of tables, "SELECT GQTY
FROM (... " eMtracts a corresponding set of columns, and AFPLY
applies the function specified as its first argument to each
column in the set of columns specified as its second argument,
producing a set of scalars —— i.e., another column. (I am not
suggesting a concrete syntax here, only indicating a possible
direction for a systematic development of such a syntax.)

As a matter of fact, GROUF BY would be logically unnecessary in
the foregoing example anyway if column function invocations were
more systematic:

SELECT DISTINCT SFX.F#, SUM (SELECT &@TY

FROM SF SPY

WHERE SPY.FP# = SFX.F#)
FROM SF SFX

This formulation also shows, incidentally, that it might be
preferable to declare aliases (range variables) such as 8FX and
SFY by means of separate statements before they are used. As it
iz, the use of such variables may often precede their definition,
possibly by a considerable amount. Although there is nothing
logically wrong with this, it does make the statements difficult
to read (and write).

Yet another conseqguence of the scoping rules (already touched on
a couple of times) is that it is not possible to nest column
function references. Extending the earlier example of generating
the total quantity per part (i.e., a column of values, each of
which is a total guantity), suppose we now wanted to find the
average total gquantity per part -— i.e., the average of that
column of values. The logical formulation is something like:

sl critigue

23

AVG (AFPFLY (SUM, SELECT @TY
FROM (GROUF SP RY F#)))

Rut (as already stated) existing S08L cannot handle this praoblem
at all in a single expression.

Let us now leave the scoping rules and consider some additional
points. Each of SUM, AVG, MAX, and MIN can optionally have its
argument qualified by the operator DISTINCT. (COUNT mpust have its
argument so qualified, though it would seem that there is no
intrinsic dJustification for this reguirement. For MAX and MIN
such gqualification is legal but has no semantic effect.) If (and
only if) DISTINCT is not specified, then the column argument can
be & "computed" column, i.e., the result of an arithmetic
expression —— for example:

SELECT AVG (X + Y)
FROM T

And (again) if and only i+ DISTINCTYT is not specified, the
function reference can itself be an operand in an arithmetic
expression —— for example:

SELECT AVG ¢ X) X
FROM T

i

In current SOL, null values are always eliminated Ffrom the
argument to a column function, tregardless of whether DISTINCT is
specified. However, this should be regarded as & property of the
existing functions specifically, rather than as a necessary
property of all column functions. In fact, it would be better to
not to ignore nulls but to introduce a new function whose effect
is to reduce a given column to another in which nulls have been
eliminated (and, of course, to allow this new function to be used
completely aorthogonally).

Table functions
Table functions are functions that operate on an entire table
{(not necessarily Jjust on a single column). There are four
functions 1in this category, two that retwn a scalar value and
two that return ancother table. The two that return a single value
are COUNT (X)) and EXISTS.

¥ COUNT(¥%) is basically very similar to the column functions
discussed above. Thus, most of the comments made above apply here

also. For example, the guery:

SELECT COUNT (&)
FROM SF

would more logically be expressed as

sql critique 24

COUNT (SELECT X
FROM SF)

or {(better) as:
COUNT ¢ SF)

COUNT (%) does not ignore nulls (i.e., all-null rows) in its
argument.

¥ EXISTS, interestingly enough, does use a more logical syntax.
For example:

SELECT X
FROM =
WHERE EXISTS
{ SELECT x
FROM SF
WHERE GSF.SH = 5.8#)

== though the EXISTS argument would look better if the "SELECT X
FROM" could be elided:

SELECT X
FROM 8
WHERE EXISTS (S5F WHERE SF.S5# = S5.5%)

or f(better still):
S WHERE EXISTS (SF WHERE SFP.S# = S5.5#%) .

EXISTS takes a table as its argument {(though that table must be
expressed as a SELECT-expression, not just as a table-name) and
returns the value true if that table i1is nonempty, false
otherwise. Because there is currently no BOOLEAN or RIT data type
in 5@, EXISTS can be used only in a WHERE clause, not (e.g.) in
a SELECT clause (lack of orthogonality once again).

Now we twn to the functions that retuwrn another table, viz.
DISTINCT and UMION.

¥ DISTINCT takes & table and returns another which is & copy of
that first table except that redundant duplicate rows have been
removed (rows that are entirely null are considered as duplicates
of each other in this process —-— that is, the result will contain
at most one all-null row). Once again the syntas is
unconventional. For instance:

SELECT DISTINCT S#
FROM SF

instead of:

DISTINCT (SELECT S#
FROM SP)

sl critigue 25

or (better):
DISTINCT (SF.SH#)

There is an apparently arbitrary restriction that DISTINCT may
appear at most once in any given SELECT statement.

¥ UMNION takes two tables (each of which must be represented by
means of a SELECT-~expression, not just as a simple table-name)
and produces another table that is their union. It i written as
an infix operator. Recause of the unorthodox syntax, it is not
possible (as mentioned before) to apply & column function such as
AVGE to a union of two columns.

Note: We consider UNION, alone of the operators of the relational
algebra, as a function in S50L merely because of the special
syntactic treatment it is given. S0OL is really a hybrid of the
relational algebra and the relational calculusy it is not
precisely the same as either, though it leans somewhat toward the
calculus —— a dialect of the calculus that does not lend itself
very neatly to support of UMION, however, which is precisely why
the special treatment is necessary.

5Ql critique 26

4. LACEKE OF ORTHOGONALITY: MISCELLANEOUS ITEMS

Let F be a database field that can accept null values, and let HF
be a corresponding host variable, with associated indicator
variable HN. Then:

SELECT F
INTO s HF : HN

is legal, and so are

INSERT ...

VALUES (sHF:HN ...)
and

UFDATE ...

SET F o= sHF:HN

But the following is not:
SELECT ... (or UPDATE or DELETE)
WHERE F = :HF:HN

References to current data

Let C be a cursor that currently identifies a record of table T.

Then it is possible to designate the "CURRENT OF CY —-- i.e., the
record currently identified by © -—- as the target of an UFDATE or
DELETE statement, e.g.. as follows:

UFDATE T

SET oun

WHERE CURRENT OF C
Incidentally, a more logical formulation would be

UFDATE CURRENT OF C
SET . e

Specifying the table-name T is redundant (this point is
recognized in the syntax of FETCH, see later), and in any case
"CURRENT OF C" is not the same kind of construct as the more

usual WHERE-predicate (e.g.. "SALARY » 20000"). Nor 1s it
permitted to combine "CURRENT OF C" with other predicates and
write (e.g.) "WHERE CURRENT OF C AND SALARY > 20000". But to

retuwrn teo the main argument: Although the (first) UPDATE
statement above is legal, the analogous SELECT statement

50l critique 27

SELECT ...
FROM T
WHERE CURRENT OF C

is not. Nor can fields within the "CURRENT OF C" be directly
referenced —— e.g.. the following is also illegal:

SELECT X
FROM EmMF
WHERE DEFTH# =
{ SELECT DEPTH
FROM DEFT
WHERE CURRENT OF D)

Turning now to the FETCH statement, we have here an example of
bundling. "FETCH C INTO ..." is effectively a shorthand for &
sequence of two distinct operations ——

STEF C TO NEXT
SELECT % INTO ... WHERE CURRENY OF C

-~ the Ffirst of which (STEP) advances € to the next recard in T
in accordance with the ordering associated with €, and the second
of which (SELECT) then retrieves that record. #As noted above,
that SELECT does not logically require any FROM clause. Replacing
the FETCH statement by two more primitive statements in this way
would have the following advantages:

{a) it is clearer;y

(b)Y it is & more logical structure (incidentally, "FETEH CY
does not really make intuitive sense — it is not the cursor
that is being fetched);

{c) it would allow SELECTs of individual fields of the current
record (i.e., "SELECT field-name" as well as "SELECT x")j;

() it would allow selective (and repeated) access to that
cwrent record (e.g., "SELECT F" followed by "SELECT G", both
selecting fields of the same record);

(e) it would be extendable to other kinds of STEF operation —-
e.g., STEF C TO FREVIOUS (say).

In fact I would go further. First, note that "CURRENT OF C" is an
example of a row-expression. Let us therefore introduce a (new)
FETCH statement, whose argument is & row-expression {as opposed
to SELECT, whose argument is a table-expression), and whose
function is to retrieve the row represented by that expression.
Next, outlaw SELECT where FETCH is really intended. Next,
introduce Y (row-expression).field-name" -- e.g.. (CURRENT OF C).F
- as a new form of scalar-—-expression. Finally, support all of
these constructs orthogonally. Thus, for example, all of the
following would be legal:

s5ql critique 28

FETCH CURRENT OF C INTO ...

FETCH (CURRENT OF C).F INTO ...

SELECT X%
FROM EMF
WHERE DEFPTH# = (CURRENT OF C).DEFT#

UFDATE CURRENT OF C
SET -

DELETE CURRENT OF C

The examples illustrate the point that "CURRENT OF C" is really a
very clumsy notation, incidentally, but an improved syntax 1is
beyvond the scope of this paper. 8See (351 for a preferable
alternative.

ORDER BY in cursor declaration

Specifying ORDER BY in the declaration of cursor C means that the
statements WUWFDATE/DELETE ... CURRENT OF C are illegal (in fact,
the declaration of C cannot include a FOR UFDATE clause if ORDER
BY is sgspecified). The ratiaonale for this restriction is that
ORDER BY may cause the program to operate on a copy instead of on
the actual data, and hence that updates and deletes would be
meaningless; but the restriction is unfortunate, to say the
least. Consider a program that needs to process employees in
department number order and needs to update some of them as it
goes. The user is forced to code along the following lines:

EXEC SOL DECLARE C CURSOR FOR
SELECT EMF#, DEPT#, ...
FROM EMP
ORDER BY DEFT# ;

EXEC sQL OPEN C
DO WHILE more-to-come ;
EXEC SOL FETCH C INTO :EMP#, :DEPT#, ... 3
it this record needs updating, then
EXEC SOl UPDATE EMP
SET .
WHERE EMF# = :EMP# /X instead of CURRENT OF C %/ ;
END
EXEC st CLOSE C ;

The UFDATE statement here is an "out—-of-the-blue" UFDATE, not the
CURRENT form. Problems:

(a) The update will be visible through cursor C if and only if
€C is running through the real data, not a copy.

(b) If cursor C is running through the real data, and if the

UPDATE changes the value of DEPT#, the effect on the position
of cursor C within the table is apparently undefined.

sgql critique 29

We remark also that the FOR UPDATE clause is a little mysterious
(its real significance is not immediately apparent); it is also
logically unnecessary. The whole of this area smacks of a most
unfortunate loss of physical data independence.

The NULL constant

The keyword NULL may be regarded as a ‘'builtin constant’,
representing the null value. However, it cannot appear in all

positions in which a scalar constant can appear. For example, the
statement

SELECT F, NULL
FROM T

iz illegal. This is unfortunate, since the ability to select NULL
is precisely what is required in order to construct an outer join
(in the absence of direct support for such an operation). See

Let T be a table-eupression. I+ T happens to evaluate to an empty
set, then what happens depends on the context in which T appears.
For example, consider the expressions

SELECT SALARY and SELECT AVG (SALARY)
FROM EMF FROM EMF
WHERE DEFTH# = "D3° WHERE DEFTH = "DI7

and suppose that department D3I currently has no emplovees. Note
that the second of these expressions represents the application
of the AVG function to the result of the first:; as pointed out
earlier, it would more logically be written as

AVE (SELECT SALARY
FROM EMF
WHERE DEFT# = "“D3I%)

¥ The statement

EXEC SOL SELECT SALARY
INTO s 5: 8N
FROM EMF
WHERE DEPTH# = "“D3° ;

gives "not found" (SQLCODE = +100, host variables 8 and &N
unchanged) .

s0l critigue

30

¥ The statement

EXEC S6L SELECT AVG (SALARY)
INTO 1 5: 8N
FROM EMP
WHERE DEPT# = "D3I" ;3

sets host variable SN to an unspecified negative value to
indicate that the value of the expression is null. The effect
on host variable § is unspecitfied.

¥ The statement

EXEC SOl SELECT ...
INTO :5: 8N
FROM .o
WHERE field IN
(SELECT SALARY
FROM EMP
WHERE DEPTH# = "“D3I°*) ;

gives "not found" (at the outer level).
¥ The statement

EXEC S@L. SELECT ...
INTO : S5 5N
FROM .
WHERE Ffield =
{ SELECT SALARY
FROM EmF
WHERE DEFTH# = “D3I") 3

also gives "not found" (at the outer level), though there is a
good argument for treating this case as an ervor, as follows:
The parenthesized expression "(SELECT SALARY ...)" should
really be regarded as a shorthand for "UNIDUE (SELECT SALARY
«ua) "y where UNMIGUE is a guantifier (analogous to EXISTS)
meaning "there exists exactly one" -— or, in other waords, a
function whose effect is to return the single element from a
singleton set and to raise an ervror i+ that set does not in
fact contain exactly one member. Note that an error would be
raised in the example if the parenthesized expression vielded
& set having more than one member (which in general, of
course, it would).

¥ The statement

EXEC S@L. SELECT ...
INTO :5: 6N
FROM .
WHERE +ield =
(SELECT AVG (SALARY)
FROM EMF
WHERE DEFPTH# = °"D3") ;

sl critigue 31

also gives "not found" at the outer level.
Inconsistent syntax
Compare the followings:

SELECT ¥ FROM T ...

UFDATE T ...

DELETE FROM T ...

INSERT INTO T ...

{ FETCH C ...)

A more consistent approach would be to define "table-expressions"
{as suggested earlier), and then to recognize that SELECT,
UFDATE, etc., are each operators, one of whose arguments is such
a table-expression. (A problem that immediately arises is that a
simple table-name is cwrently not a valid table-expression! -—-
Y = instead of being able to write simply T, the user has to
write SELECT % FROM T. This point has been mentioned before, and
is of course easily remedied.)
Note too that the syntax UFDATE T SET F = ... does not extend
very nicely to a form of UFDATE in which an entire record is
replaced en bloc (SET X = ... M. And this touches on yet another
point, viz: SEL. currently provides whole-record SELECT {and
FETCH) and INSERT operators, but no whole-record UFDATE operator.
(DELETE of couwrse must be "whole-record".)
Long fields (LONG VARCHAR, or VARCHAR(N) with n : =Z24)

Long Ffields are subijiect to numerous restrictions. Here are some
of them <{(this may or may not be an exhaustive list). A long
field:

- cannot be referenced in & predicate

- cannot be indexed

- cannot be referenced in SELECT DISTINCT

- cannot be referenced in GROUF BY

- cannot be referenced in ORDER RY

- cannot be referenced in COUNT, MAX, MIN (note: SUM and AVE
would make no sense)

- cannot be involved in a UNION

- cannot be involved in a "subqguery" (column—expression)

sql critique 32

- cannot be INSERTed from a constant or SELECT-eMpressioan

- cannot be UFDATEd from a constant (UFDATE from NULL is
legal, however)

LMION restrictions

UNIONM is not permitted on long fields or in & subguery (in
particular, in a view definition). Also, the data types of
corresponding ittems in a UNION must be exactly the same:

- if the data type is DECIMAL(p,q), then p must be the same
for both items and g must be the same for both items

- if the data type is CHAR((n), then n must be thé same for
both items

- if the data type is VARCHAR(N), then must be the same for
both items

- if NOT MULL applies to either item, then it must apply to

both
Given these restrictions, it is particularly unfortunate that a
character string constant such as "ABC® is treated as a varying
length string —— a varying string, moreover, for which npulls are

allowed.

Note also that UMIDN always eliminates duplicates. There is no
"DISTINCT/ALL" option as there is with a simple SELECT; and if
there were, the default would have to be DISTINCT {(for
compatibility reasons), whereas the default for a simple SELECT
is ALL.

-~ only works to one level (it can construct a "set of tables®
but not a "set of sets of tables", etc.) '

—~ can only have simple fields as arguments (unlike ORDER RY)

The fact is, as indicated in the discussion of functions earlier,
an orthogonal treatment of GROUF BY would require a thorough
treatment of an entirely new kind of data object, namely the "set
of tables" —-— presumably a major undertaking.

NULL anomalies

¥ Null values are implemented by hidden fields in the database.
However, it is necessary to expose those fields in the interface
to a host language such as PL/I, because FL/I has no notion of
null., As an example, if F and 6 are two fields in table T, the

sl critigue 33

UFDATE statement to set F equal to G is:

EXEC S6L. UFDATE 7T
SET F=06G ...

but the UFDATE statement to set F egual to a host variable H is
(for instance):

EXEC S50L. UPDATE T
SET F = sH:HN ...

(assuming 1in both cases that the source of the assignment might
be null).

¥ Indicator variables are not permitted in all contexts where
host variables can appear {(as already discussed).

¥ To test (in a WHERE clause) whether a field is null, &AL
provides the special comparison "field I5 NULL". It is not
intuitively obvious why the user has to write "field IS NULLY and
not "field = NULL" —-— especially as the format "field = NULL" is
used in the SET clause of the UFDATE statement to update a field
to the null value. (In fact, the WHERE clause "WHERE field =

NULL" is illegal syntax.)

¥ Null values are considered as duplicates of each other for the
purposes of UNIQUE and DISTINCT and ORDER BY but not for the
purposes of WHERE and GROUF BRY. Null values are also considered
as greater than all nonnull values for the pwposes of ORDER RY
but not for the pwposes of WHERE.

¥ NMNull values are always eliminated from the argument to a
builtin function such as SUM or AVG, regardless of whether
DISTINCT is specified in the function reference —— except +tor the
case of COUNT{(Xx), which counts all rows, including duplicates and
including all—null rows. Thus, for example, given:

SELECT AVG (STATUS) FROM S -— Result: x

SELECT SUM (8TATUS) FROM S -— Result: vy

SELECT COUNT () FROM S -~ Result: =z
there is no guarantee that » = y/z.

¥ As a consequence of the foregoing, the function reference
SUM(F) {(for example) is not semantically equivalent to the
expression

F1 + £2 + .. + fn

where 1, 2y c.ex fn are the values appearing in field F at the
time of evaluation. Perhaps even more counterintuitively, the
expression

sql critique 34

SUM (F1 + F2)
is not equivalent to the expression
SUM (F1) + SUM (F2) .

Host variables
Host wvariables are permitted in the INTO clause (of SELECT and
FETCH), the SET clause (of UFDATE), and the WHERE clause (of
SELECT, UFDATE, and DELETE), but nowhere else. In particular,
table—names and field—-names cannot be represented by host
variables.

Introduced names

The user can introduce names (aliases) for tables (e.g., FROM T
TX) but not for scalars (e.g., SELECT F FX). This latter facility
would be particularly useful when the scalar is in fact
represented as an operational expression -— e.g., SELECT A+E C.
The name C could be used in ORDER BY or in GRDUP BY or as an
inherited name in CREATE VIEW (etc., etc.).

Legal INSERTs/UFPDATEs/DELETES
Certain INSERT, UFDATE, and DELETE statements are not allowed.
For example, consider the requirement "Delete all suppliers with
a status less than the average". The statement:

DELETE
FROM 8
WHERE 8STATUS <
¢ SELECT AVG (8TATUS)
FROM 8

is illegal, because the FROM clause in the subqguery refers to the
table against which the deletion is to be done. Likewise, the
UFDATE statement

UFDATE S
SET STATUS = O
WHERE STATUS <
(SELECT AVG (STATUS)
FROM 8

is also illegal, for analogous reasons. Third, the statement

INSERT INTO T
SELECT % FROM T

which might be regarded as & perfectly natural way to "double up"
on the contents of a table T, is also illegal, again for
analogous reasans. :

sql critique 35

5. FORMAL DEFINITION

Ase indicated earlier in this paper, it would be misleading to
suggest that S50L does not possess a detailed definition. However,
as was also indicated earlier, that detinition [101 was produced
"atter the fact'. In some respects, therefore, it represents a
definition of the way implementations actually work rather than
the way a "pure” language ought to be (although it must be said
that many of the criticisms of the present paper have indeed been
addressed in [101). At the same time it provides detftinitive
answers to some guestions that @re not in agreement with the way
IBEM S80L actually works! Furthermore, there still appear to be
some areas where the definition is not vet precise enough. We
give examples of all of these aspects below.

¥ Cursor positioning

i

Let C be a cursor that is currently associated with & s=set of
records of tvpe F. Suppose mareaver that the ordering associated
with C is defined by values of field R.F. If C is positioned on a
record r and r is deleted, C goes inte the "before" state -—-
1.8, it is now positioned "before" record ri, where 1 is the
immediate successor of r with respect to the ordering associated
with € —— ar, if there is no such successor record, then it goes
into the "after" state —— i.e., it is "after" the last record in
the set (note: the "after" state is possible even if the set is
empty) .

Questionss

{a) I+ Cis "before r1" and a new record r is inserted with a
value of R.F such that r logically belongs between rl1 and rl1°s
predecessor (i+ any) , what happens to e FAnswer:
Implementation—defined. 1

(b) Does it make a difference if the new record r logically
precedes or follows the old record r that C was positioned on
before that record was deleted? [Answer: Implementation—
detined. 1

{c) Does it make a difference if C was actually running
thirough a copy aof the real set of records? LAnswer:
Implementation—defined. 1

Mote for cases (a)—-{(c) that it is guaranteed that the next

"FETCH C" will retrieve record rl1 {(provided no other DELETEs
etc. occur in the interim).

{d) What 1f the new r is not an INSERTed record but an UFDATEd
record? [Answer: Not defined.l

(e) If C is positioned on a record r and the value of field F

in that record is updated {(not via cursar C, of couwse), what
happens to C? [Answer: Not detined.]

sql critigque 36

¥ LOCK statement

Does LOCKE SHARED acquire an 8 lock or an SIX lock

£9217?

I+ the

answer is &, are updates permitted? When are locks acquired via

LOCE TABLE released?

¥ Name resolution

First, consider the two statements:

SELECT S#
FROM 5
WHERE CITY = ‘“London’

SELECT F#
FROM F
WHERE CITY = ‘London’

The meaning of the ungualified name CITY depends on the
-— it is taken as S.CITY in the first of these examples
F.CITY inm the second. But now suppose the columns are
SCITY and PCITY respectively, 50 that now the names are

context
and as
renamed
globally

unigue, and consider the gquery "Find suppliers located in cities
in which no parts are stored”. The obvious formulation of this

query is:

SELECT S#
FROM S
WHERE NOT EXISTS
{ SELECT %
FROM F
WHERE FCITY = SCITY)

Hovever, this statement is invalid. S0L assumes that

"SCITY" is

shorthand for "F.SCITY", and then complains that no such field

exists. The following statement, by contrast,

SELECT S#

FROM S
WHERE NOT EXISTS
(SELECT X%
FROM P

WHERE PCITY = S.8CITY)
"So also is:

SELECT S#
FROM 5 8X
WHERE NOT EXISTS
(SELECT X
FROM F
WHERE FPCITY = SX.8CITY)

Is the following legal?

sl critigue 37

is perfectly valid:

SELECT X
FROM S
WHERE EXISTS (SELECT X
FROM 8SF SPX

WHERE SFX.S# = S.S#
AND SFX.P# = “F1°
AND EXISTS (SELECT X

FROM SF SFX
WHERE SFX.5# = S.6#%
AMD SFEX.F# = “F27))

What if "FROM SP SFX" is replaced by "FROM SF" (twice) and all
other occurrences of "SPX" are replaced by "SF"? éAnd is the
following legal?

SELECT %
FROM =
WHERE EXISTS (SELECT X
FROM SF SFX

WHERE SPX.5#% = 5.G#

AND SPX.FH# = “F1")
AND EXISTS (SELECT X

FROM 5F SFX

WHERE GSFX.S8% = 5.5#%

AND SFX.FH# = P27)

(etc., etc.). In other words: What are the name scoping rules for
"aliases" (range variables)?

There is another point to be made while on the subject of name
resolution, incidentally. Consider the statement:

SELECT S.S#, F.P#
FROM S, F
WHERE S.CITY = P.CITY

{we now go back to the unqualified name CITY in each of the two
tables). This statement is (conceptually) evaluated as follows:

- form the product of § and F; call the result TEMFI

—~ restrict TEMP1l according to the predicate S5.CITY = P.CITY;
call the result TEMP2

- praject TEMFZ2 over the columns S.5# and P.F#

But how can this be done? The predicate "S.CITY = F.CITY" does
not refer to any columns of TEMFL (it refers to columns of § and
F. obviously). Similarly, S.8# and F.F# are not columns of TEMPZ.
In order for these references to be interpreted appropriately, it
i necessary to introduce certain npame inheritance rules,
indicating how iresult tables inherit column—names from their
souwrce tables {(which may of course may themselves also he
Cintermediated result tables, with inherited column-names of

sl critigue

38

their own) . Such rules are currently defined only very
informally, if at all. Such rules become even more important i+t
S0L is to provide support for nested expressions.

When exactly does a cursor iterate over the real "base data" and
when over a copy?

¥ Binding of "SELECT X!

When exactly does "¥" become bound to & specific set of field-
names? [Answer: Implementation—defined -— but this seems an
unfortunate aspect to leave to the implementer, especially as the
binding is likely to be different for different uses of the
featuwre (e.g.. it may depend on whether the "X" appears in a
program or in a view definition).]

sl critique 39

&. MISMATCH WITH HOST LANGUAGE

The general point here is that there are far too many frivolous
distinctions between 5S@L and the host language 1in which it
happens to be embedded: also that in some cases S0L has failed to
benefit from lessons learned in the design of those host
languages. Generally, orthogonality suggests that what is useful
on one side of the interface (in the way of data structuring and
access for permanent” [i.e., databasel data) is likely to be
useful on the other side also (for ‘“temporary" [i.e., locall
data); thus, a distinct sublanguage is the wrong approach, and a
two-level store is wrong too (fundamentally so!). Some specific
points:

¥ 500 does not exploit the exception-handling capabilities of the
host (e.g., FL/I ON-conditions). This point and {(even more so)
the following one mean that S0L does not exactly encowrage the
production of well-structured, guality programs, and that in some
respects SEL programming is at a lower level than that of the
host.

¥ S50l does not exploit the control structures of the host (loop
constructs in particular). See the previous point.

¥ S50L objects (tables, cursors, etc.?) are not known and cannot be
referenced in the host environment.

¥ Host objects can be referenced in the SEL environment only if:
- they are specially declared (may not apply to all hosts)

- they are scalars or certain limited structures {(in
particular, they are not arrays)

~ the references are marked with a colon prefis {admittedly
only in some contexts —— but in my opinion "some" is worse
than "all")

- the references are constirained to certain limited contexts
(e.g., they can appear in a SELECT clause but not a FROM.
clause)

- the references are constrained to certain limited +formats
(e.g., no subscripting, only limited dot gqualification, etc.)

¥ SGL cbjiect names and host object names are independent and may
clash. S8L names do not follow the scoping rules of the host.

¥ 80L keywords and host keywords are independent and may clash
(e.g., PL/1 SELECT vs. S0OL SELECT).

¥ 80L and host may have different name qualification rules (e.g.,

T.F in 88 vs., F OF T in COROL: and note that the S6L form must
be used even for host object references in the SO envivonment).

sl critique 40

¥ 50L and host may have different data tvpe conversion rules.

¥ S0L and host may have different expression evaluation rules
=2« S0 division and varvying string comparison differ $from
their PLL/I analogs [at least in SEL/7DST) .

¥ 0L and host may have different Boolean operators (AND, OR, and
MOT in SBL vs. &, 1, and ™~ in PL/I).

¥ S0L and host may have different comparison operators (e2.g.,
COROL has IS NUMERIC, SO0L has BETWEEN [and many othersl).

¥ S0l imposes statement ordering restrictions that are alien to
the host.

X SOL DECLARE cannot be abbreviated to DCL, unlike FL/I DECLARE.
¥ Null is handled differently on the two sides of the interface.

¥ Function references have different formats on the two sides of
the interface.

¥ SEL name resolution rules are different from those of the host.

¥ Cursors are a clumsy way of bridging the gap between the
database and the program. 6 much better method would be to
associate a query with a conventional sequential file in the host
program, and then let the program use conventional READ, REWRITE,
and DELETE statements to access that Ffile (mavbe INSERT
statements too).

¥ The ‘'structure declarations" in CREATE TABLE should use the
standard COROL or FL/I (etc.) syntax. As it is, it is doubtful
whether they can be elegantly extended to deal with minor
structures (composite fields) or arravs, should such extensions
ever prove desirable (they will).

¥ The SBL parameter mechanism is regressive, clumsy, ad hoc,
restrictive, and different from that of the host.

gl critique 41

7. MISSING FUNCTION

{Note: It is obviously possible to extend the existing language
to incorporate most if not all of the following features. We
mention them for completeness.)

¥ Ability to override WHENEVER NOT FOUND at the level of an
individual statement.

¥ "Whole—record" UFDATE.

¥ Frocedure call instead of 60 TO on WHENEVER.

¥ Cursor stepping other than "next".

¥ Cursor comparison.

¥ Cursor assignment.

¥ Cursor constants.

¥ Cursor arrays.

¥ Dynamically created cursors and/or cursor stacks.

¥ Reusable cursors.

¥ Ability to access a unigue record and keep a cuwsor on it
without having to go through separate DECLARE, OFEN, and FETCH:
e.g., "FETCH UNIQUE (EMFP WHERE EMF# = “E2°) SET (C) ".

¥ Fine control over locking.

sql critique

42

8. MISTAKES

I have argued against null values at length elsewhere (461, and I
will not repeat those arguments here. In my opinion the null
value concept is far more trouble than it is worth. Certainly it
has never been properly thought through in the existing S6OL
implementations (see the discussion under “Lack of Orthogonality:
Miscellaneous Items", earlier). For example, the fact that
functions such as AVE simply ignore null values in their argument
violates what should surely be a fundamental principle, viz: The
system should never produce a (spuriously) precise answer to a

guery when the data involved in that guery is itself imprecise,
At least the system should offer the user the explicit option
either to idignore nulls or to treat their presence as an

exception.

¥ Unique indexes
Field wunigueness is a 1logical property of the data, not a
physical property of an access path. It should be specified on
CREATE TABLE, not on CREATE INDEX. Specifying it on CREATE INDEX
is an unfortunate bundling, and may lead to a loss of data
independence (dropping the index puts the integrity of the
database at risk).

The only function of the FROM clause that is not actually
redundant is to allow the introduction of range variables, and
that function would be better provided in some more elegant
manner . (The normal use, as exemplified by the expression SELECT
F FROM T, could better be handled by the expression SELECT T.F,

especially since this latter expression —— with an accompanying
but redundant FROM clause —-— is already legal SOL.)
¥ Punning

SRL does not make & clear distinction between tables, record
types, and range variables. Instead, it allows a single svmbol to
stand for any one of those objects, and leaves the interpretation
to depend on context. Conceptual clarity would dictate that it at
least be possible always to distinguish among these different
constructs (i.e., syntactically), even if there are rules that
allow such punning games to be played when intuitively
convenient. Otherwise 1t 1is possible that ~-- for example —-
extendability may suffer, though I have to admit that I cannot at
the time of writing peoint to any concrete problems. (But it
shouldn™t be necessary to have to defend the principle of a one-
to—one correspondence between names and objects!t)

While on the subject of punning, I might also mention the point
that 8L is ambivalent as to the meaning of the term "table".

sql oritigue

43

Sometimes "table'" means, specifically, & base table (as in CREATE
TABLE); at other times it means "base table or view" tas in
COMMENT ON TABLE). Since the critical point about a view is that
it is a table (just as the critical point about a subset is that
it is a set), I would vote for the following changes:

(a) Replace the terms "base table" and "view" by "real table®
and "virtual table", respectively:;

(b) lUse the term "table" generically to mean "real table or
virtual table'";

() In concrete syntax, use the expressions [REALI TABLE and
VIRTUAL TABLE (where it is necessary to distinguish them),
with REAL as the default.
¥ "SELECT X!
This is a good example of a situation in which the needs of the
end—-user and those of the application programmer are at odds.
"SELECT xv is Ffine for the interactive user (it SAVes
keystrokes). I believe it is rather dangerous for the programmer
(because the meaning of "X" may change at any time in the life of
the program). The use of "ORDER BY n" {(where n is an integer
instead of a field-name) in conjunction with "SELECT %" could be
particularly unfortunate. Similar remarks apply to the use of
INSERT without & list of field-names.

Incidentally, I believe that the foregoing are the only
situations in the entire S50L language in which the user is
dependent on the left-to-right ordering of columns within a

table. It would be nice to eliminate that dependence entirely
(estcept possibly for "SELECT x", for interactive queries only).

¥ =ANY (etc.)

The comparison operators =ANY, AL, etc., are totally redundant
and in many cases actively misleading. The following example is
taken from "IBM Database 2 S0L Usage Guide" (IBM Form No. GGE24-
1583): "Select employees who are vounger than any member of
department EZ21" (irrelevant details omitted).

SELECT EMPNO, LASTNAME, WORKDEFT
FROM TEMFL
WHERE BRTHDATE *ANY (SELECT BRTHDATE
FROM TEMFL
WHERE WOREDEPT = “E21°)

This SELECT does not find emplovees who are vounger than any
employee in E21 (at least in the sense that this requirement
would normally be understood in colloquial English) —-— it finds
employees who are vyounger than some emplovee in E21.

To illustrate the redundancy, consider the query: "Find supplier

names for suppliers who supply part F2Y., This is a very simple

s5gl critique 44

problem,

course,

vet

the

formulations

In

1. SELECT
FROM
WHERE

¢

2. BELECT
FROM
WHERE

{

3. SELECT
FROM
WHERE

{

SELECT
FROM
WHERE

9. SELECT
FROM
WHERE

{

SELECT

FROM

WHERE
{

SELECT

FROM

WHERE
{

general, t

WHERE » $A

sql critique

it is not difficult to find no
least superficially distinct formulations for

differences

waorked equally well,

SNAME

)

S# IN

SELECT S#

FROM — SF

WHERE F# = *F2°
SNAME

S

S# =ANY

SELECT S#

FROM SP

WHERE F# = "F2°)
SNAME

5

EXISTS

SELECT %

FROM SF

WHERE S# = S.5#
DISTINCT SNAME
S, SF

S.5# = SF.S# AND
SNAME

g

[I

SELECT COUNT (X)
FROM SF

WHERE GS# = G.S5#
SNAME

S

PRt IN

SELECT F#

FROM SPF

WHERE S# = 5.5#
SNAME

5

"FRY =ANY

SELECT F#

FROM SF

WHERE G# = S.S#

he WHERE clause

NY

would not be
but that is

AND P# = “P2°)
F# = “P27)
AND P# = "P27)

(SELECT v FROM T WHERE p)

45

less than seven
it (see below).
important if
unlikely.

at
Of
all

(where $ is any one of =, >y etc.) is equivalent to the WHERE
clause

WHERE EXISTS (SELECT ¥ FROM T WHERE (p) AND 2 % T.y)
Likewise, the WHERE clause

WHERE x $ALL (SELECT y FROM T WHERE p)
is equivalent to the WHERE clause

WHERE NOT EXISTS (SELECT % FROM T WHERE (p)
AND NOT (» $ T.y))

As a matter of fact, it is not just the comparison operators =ANY
(etc.) that are redundant; the entire subquery construct could be
removed from S50L with effectively no loss of function. (Nested
table- and column—-expressions etc. would of course still be
required, as argued earlier.) This is ironic, since it was the
subgquery notion that was the justification for the "Structured®
in "Structuwed Guery Language"”" in the first place.

sl critigue 46

9. ASFECTS OF THE RELATIONAL MODEL NOT SUFFORTED

There are several aspects of the full relational model {as
defined in, ©.9. [21) that S0L does not currently support. We
list them here in approximate order of importance. Again, of
course, most of these features can be added to S6L at some later
point -— the sgoner the better, in most cases. However, their
omission now leads to a number of situations in current S0L that
are edxtremely ad hoc and may be difficult to remedy later on, for
compatibility reasons.

¥ Frimary keys
Frimary keys provide the sole record-level addressing mechanism
within the relational model. That is, the only system—guaranteed
method of identifying an individual record is via the combination
(Ryk), where R is the name of the containing relation and k is
the primary key value for the record concerned. Every relation
(to be a relation) is required to have a primary key. Primary
Leys are (of course) required to be wunigque; in the case of real
(tbase) relations, they are also required to be (wholly) nonnull.

S0L currently provides mechanisms that allow users to apply the
prrimary key discipline for themselves (if they choose), but does
not itselft understand the semantics associated with that
discipline. As a result, SOL support for certain other functions
is either deficient or lacking entirely, as we now explain.

1. Consider the query

SELECT FP.F#, P.UWEIGHT, AVG (SF.OTY)
FROM F. 8F

WHERE F.F# = SF.P#

GROUF BY P.F#, P.WEIGHT

The "F.WEIGHT" in the GROUF BY clause is logically redundant,
but must be included because SG8L does not understand that
F.WEIGHT is single-valued per part number (perhaps only a
minaor annoyance, but it could be puzzling to the user).

2. Frimary key support is prerequisite to foreign key support
(see the following subsection).

3. An understanding of primary keys is required in order to
support the updating of views correctly. S@.'s rules for the
updating of views are in fact disgracefully ad hoc. We
consider projection, restriction, and join views in twrn
below. Further discussion of this topic can be found in [71.

F(a). A projection is logically updatable if and only if
it preserves the primary key of the underlying relation.
However St supports updates, not on projections per =e,
but on what might be called column subsets —— where a
"column subset" is any subset of the columns of the

sl critique 47

underlying table for which duplicate elimination is not
reguested (via DISTINCT) —— with a "user beware" if that
subset does not in fact include the underlving primary
key. (Actually the situation is even worse than this. Even
a column subset is not updatable if the FROM clause in the
detinition of that subset lists multiple tables. Moreover,
updates are prohibited if duplicate elimination is
requested, even if that request can have no effect because
the column subset does include the underlving primary
key.)

3. Any restriction is leogically updatable. SOL however
does not permit such updates i+ duplicate elimination is
requested (even though such a request can have no effect
it the underlying table does have a primary key), nor if
the FROM clause lists multiple tables. What is more, even
when it does allow updates, S0OL does not always check that
updated records satisfy the restriction predicate; hence,
an updated (or inserted) record may instantaneously vanish
from the view, and moreover there are concomitant security
exposures (e.g., a user who is restricted to accessing
enployees with salary less than $40k may nevertheless
create a salary greater than that value via INSERT or
UFDATE) . [Note: The CHECK option, which is intended to
prevent such abuses, cannot always be specified.l Also,
the fact that S50L auvtomatically supplies null values for
missing fields in inserted records means that it is
impossible for such records to satisfy the restriction
predicate 1n some cases (consider, for example, the view
"employees in department D3", if the view does not include
the DEFTH# field). However, these latter deficiencies are
nothing to do with SBL."s lack of knowledge of primary kevs
per se.

Iy, A doin of two tables on their primary keys is
logically updatable. So also is a join of one table on its
primary key to another on a matching foreign key {(though
the details are not totally straightforward). However, S0L

¥ Foreign keys

Foreign keys provide the principal referencing mechanism within
the relational model. Loosely speaking, a foreign key is a field
in one table whose values are required to match values of the
primary key in another table. For example, field DEFTH# of the EMF
table is a foreign key matching the primary key (DEFTH#) of the
DEFT table.

Stl. does not currently provide any kind of support +or the
foreign key concept at all. I regard lack of such support as the
maior deficiency in relational systems today (SOL is certainly
not alone in this regard). Froposals for such support are
documented in some detail in [71.

sql critigque 48

¥ Domains

S currently provides no support for domaing at all, except
inasmuch as the fundamental data types (INTEGER, FLOAT, etc.) can
be regarded as & very primitive kind of domain.

A limited form of relation assignment is supported via INSERT ...
SELECT, but that operation does not overwrite the previous
content of the target table, and the source of the assignment
cannot be an arbitrary algebraic expression (or S0L equivalent).

¥ Explicit JOIN

We mentioned earlier that explicit support for the (natuwral) join
operation was desirable. At that point we were tacitly discussing
the inner or regular natural join. The observation is still more
applicable to guter join. Reference [41 shows how awkward it is
to extend the circumlocutory SELECT-style join to handle outer
joins. Thus, support for an explicit JOIN operator is likely to

become even more desirable in the future than it is already.

¥ Explicit INTERSECT and DIFFERENCE
These omissions are not particularly important (equivalent
SELECT-expressions exist in each case); however, symmetry would
suggest that, since UNION is explicitly supported, INTERSECT and
DIFFERENCE ought to be explicitly supported too. Some problems
are mast "naturally” formulated in terms of explicit
intersections and differences. On the other hand, as indicated
earlier, it is usually not & good idea to provide a multiplicity
of equivalent ways of formulating the same problem, unless it can
be guaranteed that the implementation will recognize the
equivalences and will treat all formulations egqually, which is
probably unlikely.

sql critigue 49

10. SUMMARY AND CONCLUSIONS

This paper has discussed & large number of deficiencies in the
S0, language as currently defined, in the hope that such a

discussion can serve as a step toward remedying those
deficiencies. In fact (as remarked earlier), the ANS Database
Committee (X3H2) has already remedied some of them in its "RDL"

proposal; a secondary objective for the present paper is thus to
serve as a document of justification for the changes X3IHZ has
already made.

0f cowse, I realize that many of the shortcomings identified in
this paper will very likely be dismissed as academic, trivial, or
unimportant by many people, especially as S56L is so clearly
superior to older languages such as the DML of DRTG. However,
experience shows that "academic" considerations have a nasty
habit of becoming horribly practical a few years fuwther down the
road. The mistakes we make now will come back to haunt us in the
future. Indeed, the language in its present form is already
proving difficult to extend in some (desirable) ways because of
limitations in its current structure. A very trivial example is
provided by the problems of adding support for composite fields
(i.e., minor structures).

In conclusion, let me repeat the point that many other database
languages suffer from similar shortcomings: SEL is (as stated
before) certainly not the sole offender. But the fact remains
that, if S0L is adopted on a wide scale in its present form, then
we will to some degree have missed the relational boat, or at
least failed to capitalize to the fullest possible extent on the
potential of the relational model. That would be a pity, because
we had an oppaortunity to do it right, and with & little effort we
could have done so. The question is whether it is now too late. I
sincerely hope not.

sql critique 50

ACENOWLEDGMENTS

I am grateful to my friends and colleagues Ted Codd, FPhil Shaw,
and Sharon Weinberg for their helpful comments and criticism.

sql critigue 51

REFERENCES

1. M.M.Astrahan et al. "System R: Relational Approach to Database
Management." ACM TODS 1, No. 2 (June 1976).

2. E.F.Codd. "Extending the Database Relational Model to Capture
More Meaning.” ACM TODS 4, No. 4 (December 1979).

3. C.d.Date. "Some Frinciples of Good Language Design.'" Submitted
to ACM SIGMOD Record.

4., C.Jd.Date. "The Duter Join." Proc. 2Znd International Conference
on Databases (ICOD-2), Cambridge, England {August-September
1983 .

5. C.J.Date. “An Introduction to the Unified Database Language
(UDLY . " Proc. 6th International Conference on Very Large Data
Rases, Montreal, Canada (October 1980},

. C.Jd.Date. "Null Values in Database Management" {invited
paper). FProc. 2nd British MNational Conference on Databases
(BNCOD-2), Bristol, England {(July 1982).

7. C.J.Date. A Guide to DRZ. Addison-Wesley (to appear 1984).

8. J.N.Gray. Frivate communication.

?. J.N.Gray et al. "Granularity of Locks in a Large Shared Data
Base." Froc. ist International Conference on Very Large Data
Bases, Framingham, Mass. (September 1975).

10. XEH2 (American National Standards Database Committee). Draft
Froposed Relational Database Language. Document X3H2-83-152
(August 1983).

sgl critigue 52

AFPENDIX: SCL STRONGFOINTS

simple data structure

it

SAL is based on the relational model, and as such supports the
simple tabular data structure of that model. It does not support
any user-visible links between tables.

SOL. also supports {indirectly) all the operators of the
relational algebra, including in particular the aperators SELECT
(i.e., RESTRICT), FROJECT, and {(natural) JOIN (these are the ones
reguired most often in practice). Each of these operators is very
high-level, in the sense that it treats entire sets of records as
single operands.

It is wvery easy to learn enough of the SEL language to "get on
the air" and start doing real, useful work; thus, the initial
learning period is typically very short indeed —- certainly hours
rather than days or weeks.

Improved data independence

Users are insulated, to a greater degree than with earlier
languages, from the physical structuwre of the database (physical
data independence). This fact means that: (a) Users can

concentrate on the logic of their application without having to
concern themselves with irrelevant physical detailss (bh) the
phvsical structure of the database can be changed without
necessitating any corresponding reprogramming. Users are also
insulated to some extent from the logical structwe of the
database (logical data independence); this means that users can
concentrate on just that portion of the data that is of interest
to them {(they may not even be aware of other portions), and it
also means that some limited changes can be made to the logical
structure of the database without very much reprogramming
(probably not without any, however).

Integrated data definition and data manipulation
sel. imposes comparatively few artificial boundaries between
definition functions and manipulation functions. For example, the
creation of a view (a definition function) involves essentially
the same SELECT operation as does the formulation of a query (a
manipulation function). This uniformity, again, makes the
language easier to learn and use.

sql critique 53

Double mode of use

56 can be used both interactively {(i.e., as a query language)
and embedded in a program {(i.e., as a database proaogramming
language). This property is desirable for several reasons. First,
it improves communication: End-users and application programmers
are "speaking the same language"'". Second, it makes programmers,
as well as end-users, more productive —— the benefits sketched
above (e.g., the provision of high-level operators) apply to
programmers too. And third, the interactive interface provides a
very convenient programmer debugging facility; that is,
application programmers can take the SOL portions of their
progrram and debug them interactively at the terminal.

ntegrated c

S atalog

Since the database catalog is represented just like any other
data in the system (i.e., as a collection of tables), it can be
interrogated by means of S0L SELECT statements, just like any
other data in the system. Users do not have to learn two
languages, one for guerying the dictionary {(for the catalog is in
effect exactly that, a rudimentary, online, active dictionary),
and one for querying the database.

Compilation and optimization
SEL is capable of efficient implementation, via the by now well-
known compilation/optimization techniques pioneered in the IEM
prototype System R. Moreover, the fact that SO is compiled, and
hence that systems such as System R are "early binding" systems,
does not compromise the flexibility of those systems. If a change
is made to the database (such as the dropping of an index) that
invalidates an existing compiled program, then that program -—-
or more accurately, the S0L statements within that program -—-
will autaomatically be recompiled and rebound on the next
invocation. Thus the system can provide the flexibility of late
binding without incurring the interpretation overheads normally
associated with such systems.

sl critigue 54

