
Machine learning

Instructor: Vincent Conitzer



Why is learning important?

• So far we have assumed we know how the world 

works

– Rules of queens puzzle

– Rules of chess

– Knowledge base of logical facts

– Actions’ preconditions and effects

– Probabilities in Bayesian networks, MDPs, POMDPs, …

– Rewards in MDPs

• At that point “just” need to solve/optimize

• In the real world this information is often not 

immediately available

• AI needs to be able to learn from experience



Different kinds of learning…
• Supervised learning:

– Someone gives us examples and the right answer (label) 

for those examples

– We have to predict the right answer for unseen examples

• Unsupervised learning:

– We see examples but get no feedback (no labels)

– We need to find patterns in the data

• Semi-supervised learning:

– Small amount of labeled data, large amount of unlabeled 

data

• Reinforcement learning:

– We take actions and get rewards

– Have to learn how to get high rewards



Example of supervised learning: 

classification
• We lend money to people

• We have to predict whether they will pay us back or not

• People have various (say, binary) features: 
– do we know their Address? do they have a Criminal record? high 

Income? Educated? Old? Unemployed?

• We see examples: (Y = paid back, N = not)
+a, -c, +i, +e, +o, +u: Y

-a, +c, -i, +e, -o, -u: N

+a, -c, +i, -e, -o, -u: Y

-a, -c, +i, +e, -o, -u: Y

-a, +c, +i, -e, -o, -u: N

-a, -c, +i, -e, -o, +u: Y

+a, -c, -i, -e, +o, -u: N

+a, +c, +i, -e, +o, -u: N

• Next person is +a, -c, +i, -e, +o, -u.  Will we get paid back?



Classification…
• We want some hypothesis h that predicts whether we will be 

paid back
+a, -c, +i, +e, +o, +u: Y

-a, +c, -i, +e, -o, -u: N

+a, -c, +i, -e, -o, -u: Y

-a, -c, +i, +e, -o, -u: Y

-a, +c, +i, -e, -o, -u: N

-a, -c, +i, -e, -o, +u: Y

+a, -c, -i, -e, +o, -u: N

+a, +c, +i, -e, +o, -u: N

• Lots of possible hypotheses: will be paid back if…
– Income is high (wrong on 2 occasions in training data)

– Income is high and no Criminal record (always right in training data)

– (Address is known AND ((NOT Old) OR Unemployed)) OR ((NOT 
Address is known) AND (NOT Criminal Record)) (always right in training 
data)

• Which one seems best?  Anything better?



Occam’s Razor
• Occam’s razor: simpler hypotheses tend to 

generalize to future data better

• Intuition: given limited training data, 

– it is likely that there is some complicated hypothesis 
that is not actually good but that happens to perform 
well on the training data

– it is less likely that there is a simple hypothesis that 
is not actually good but that happens to perform 
well on the training data

• There are fewer simple hypotheses

• Computational learning theory studies this in 
much more depth



Decision trees

high Income?

yes no

NO
yes no

NO

Criminal record?

YES



Constructing a 

decision tree, one 

step at a time
address?

yes no

+a, -c, +i, +e, +o, +u: Y

-a, +c, -i, +e, -o, -u: N

+a, -c, +i, -e, -o, -u: Y

-a, -c, +i, +e, -o, -u: Y

-a, +c, +i, -e, -o, -u: N

-a, -c, +i, -e, -o, +u: Y

+a, -c, -i, -e, +o, -u: N

+a, +c, +i, -e, +o, -u: N

-a, +c, -i, +e, -o, -u: N

-a, -c, +i, +e, -o, -u: Y

-a, +c, +i, -e, -o, -u: N

-a, -c, +i, -e, -o, +u: Y

+a, -c, +i, +e, +o, +u: Y

+a, -c, +i, -e, -o, -u: Y

+a, -c, -i, -e, +o, -u: N

+a, +c, +i, -e, +o, -u: N
criminal? criminal?

-a, +c, -i, +e, -o, -u: N

-a, +c, +i, -e, -o, -u: N

-a, -c, +i, +e, -o, -u: Y

-a, -c, +i, -e, -o, +u: Y

+a, -c, +i, +e, +o, +u: Y

+a, -c, +i, -e, -o, -u: Y

+a, -c, -i, -e, +o, -u: N

+a, +c, +i, -e, +o, -u: N
income?

+a, -c, +i, +e, +o, +u: Y

+a, -c, +i, -e, -o, -u: Y

+a, -c, -i, -e, +o, -u: N

yes no
yes no

yes no Address was 

maybe not the 

best attribute to 

start with…



Starting with a 

different attribute
yes no

+a, -c, +i, +e, +o, +u: Y

-a, +c, -i, +e, -o, -u: N

+a, -c, +i, -e, -o, -u: Y

-a, -c, +i, +e, -o, -u: Y

-a, +c, +i, -e, -o, -u: N

-a, -c, +i, -e, -o, +u: Y

+a, -c, -i, -e, +o, -u: N

+a, +c, +i, -e, +o, -u: N

criminal?

-a, +c, -i, +e, -o, -u: N

-a, +c, +i, -e, -o, -u: N

+a, +c, +i, -e, +o, -u: N

+a, -c, +i, +e, +o, +u: Y

+a, -c, +i, -e, -o, -u: Y

-a, -c, +i, +e, -o, -u: Y

-a, -c, +i, -e, -o, +u: Y

+a, -c, -i, -e, +o, -u: N

• Seems like a much better starting point than address

– Each node almost completely uniform

– Almost completely predicts whether we will be paid back



Different approach: nearest neighbor(s)
• Next person is -a, +c, -i, +e, -o, +u.  Will we get paid 

back?

• Nearest neighbor: simply look at most similar example 
in the training data, see what happened there
+a, -c, +i, +e, +o, +u: Y  (distance 4)

-a, +c, -i, +e, -o, -u: N  (distance 1)

+a, -c, +i, -e, -o, -u: Y  (distance 5)

-a, -c, +i, +e, -o, -u: Y  (distance 3)

-a, +c, +i, -e, -o, -u: N  (distance 3)

-a, -c, +i, -e, -o, +u: Y  (distance 3)

+a, -c, -i, -e, +o, -u: N  (distance 5)

+a, +c, +i, -e, +o, -u: N  (distance 5)

• Nearest neighbor is second, so predict N

• k nearest neighbors: look at k nearest neighbors, take 
a vote
– E.g., 5 nearest neighbors have 3 Ys, 2Ns, so predict Y



Another approach: perceptrons
• Place a weight on every attribute, indicating how 

important that attribute is (and in which direction it 
affects things)

• E.g., wa = 1, wc = -5, wi = 4, we = 1, wo = 0, wu = -1
+a, -c, +i, +e, +o, +u: Y  (score 1+4+1+0-1 = 5)

-a, +c, -i, +e, -o, -u: N  (score -5+1=-4)

+a, -c, +i, -e, -o, -u: Y  (score 1+4=5)

-a, -c, +i, +e, -o, -u: Y  (score 4+1=5)

-a, +c, +i, -e, -o, -u: N  (score -5+4=-1)

-a, -c, +i, -e, -o, +u: Y  (score 4-1=3)

+a, -c, -i, -e, +o, -u: N  (score 1+0=1)

+a, +c, +i, -e, +o, -u: N  (score 1-5+4+0=0)

• Need to set some threshold above which we predict to 
be paid back (say, 2)

• May care about combinations of things (nonlinearity) –
generalization: neural networks



Reinforcement learning
• There are three routes you can take to work: A, 

B, C

• The times you took A, it took: 10, 60, 30 minutes

• The times you took B, it took: 32, 31, 34 minutes

• The time you took C, it took 50 minutes

• What should you do next?

• Exploration vs. exploitation tradeoff

– Exploration: try to explore underexplored options

– Exploitation: stick with options that look best now

• Reinforcement learning usually studied in MDPs

– Take action, observe reward and new state



Bayesian approach to learning
• Assume we have a prior distribution over the long term 

behavior of A
– With probability .6, A is a “fast route” which:

• With prob. .25, takes 20 minutes

• With prob. .5, takes 30 minutes

• With prob. .25, takes 40 minutes

– With probability .4, A is a “slow route” which:
• With prob. .25, takes 30 minutes

• With prob. .5, takes 40 minutes

• With prob. .25, takes 50 minutes

• We travel on A once and see it takes 30 minutes

• P(A is fast | observation) = P(observation | A is 
fast)*P(A is fast) / P(observation) = .5*.6/(.5*.6+.25*.4) 
= .3/(.3+.1) = .75

• Convenient approach for decision theory, game theory



Learning in game theory

• Like 2/3 of average game

• Very tricky because other agents learn at the 

same time

• From one agent’s perspective, the 

environment is changing

– Taking the average of past observations may not 

be good idea


