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Outline:

• Hamiltonian Path to TSP

• 3-SAT to quadratic program

• Tripartite Matching to SUBSET SUM

1 General recipe for doing reductions

In order to prove that B is NP-hard, given that we know A is NP-hard.
Reduce A to B (and NOT in the other direction).

Steps:

1. Given an instance X of A, create an instance Y of B.

2. If answer to X is YES, then answer to Y is YES.

3. If answer to X is NO, then answer to Y is NO; use contrapositive.

When you are trying to construct an instance Y of B, keep the second and third steps into consideration.
Suppose I have a solution to X, how do I construct a solution to Y?

2 Hamiltonian Path to TSP

Hamiltonian Path: Given a graph G (directed/undirected), a start vertex s and an end vertex t, find a path
from s to t that visits every vertex in G exactly once.
Hamiltonian cycle problem is another well-known NP-hard problem.
Such a path does not always exist. A simple example is a tree where the root has three children, two of
which are s and t. Thus, this is a NO instance for the Hamiltonian Path problem.

Travelling Salesman Problem: Given a weighted graph G, and there is a salesman who wants to start at a
vertex s, visit all vertices and come back to s.

Given a threshold L, TSP cycle problem asks whether there is a way to visit all vertices (and come back to
s) with total edge length at most L.
Aside: In some sense, the starting vertex in the cycle version of this problem does not matter.
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2.1 Reduction from Hamiltonian Path to TSP

1. Given an instance X of Hamiltonian Path problem, create an instance Y of TSP cycle problem.
Similarities: visit every vertex one.
Difference: For Hamiltonian Path problem we are given an unweighted graph, whereas for TSP we
are given a weighted graph. Also, one looks at paths but the other looks at cycles.

Use the same set of vertices. Y is a complete graph on these vertices.
Add an edge between s and t in Y . For every edge that does not appear in X but is in Y , assign a large
weight. Set the weight of the edge between s and t to be 0 because we want the TSP cycle problem to
be able to pick this edge. For edges in X and Y , assign a small weight.

L = n−1 in the intended solution since there are n−1 edges in the original graph cost.

2. If answer to X is YES, then answer to Y is YES.
Select the same path in Y and add the edge connecting s and t. This gives us a valid TSP cycle in Y .
Also, the length of the cycle is n−1 which equals the length of a Hamiltonian path in X .

3. If answer to X is NO, then answer to Y is NO; use contrapositive.
If there is a cycle in the TSP problem with total length n−1. There are n edges in the TSP cycle YES
instance, of which one has a weight of 0. All other edges have weights ≥ 1. Then the only way to
have total length equal to n−1 is to include the edge s− t and only use edges of length 1. This gives
us a valid Hamiltonian Path in the original graph.

3 3SAT to Quadratic Programming

In quadratic programming, you can have polynomials of degree at most 2 in the given variables. An example
is x2

1 + x2x3 + x4 ≤ 3. It is very powerful, and NP-hard to solve. Under this definition, this problem is not in
NP because it can involve irrational numbers and it is not clear how to represent these numbers in computers
and how to verify a solution.

Decision problem: Given a set of quadratic constraints, does there exist a feasible solution?
Here, we are trying to use quadratic programming to solve 3SAT.

3.1 Reduction from 3SAT to Quadratic Programming

1. Given an instance X of 3SAT, create an instance Y of Quadratic Programming.

We need gadgets for variables here so we can map solutions between the two problems.
Variable xi is either true or false. We create variables in the quadratic program that can only take
values: 0/1. Say if yi is this variable, then y2

i = yi enforces that yi is either 0 or 1.
Negation of a variable yi : 1− yi.

We also need gadget for clauses. Suppose we have a clause x1
∨

x3
∨

x5 Then, the interpretation of the
associated variables will be that either x1 is true, x3 is true or x5 is false. Thus, y1 + y3 +(1− y5)≥ 1.
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2. If answer to X is YES, then answer to Y is YES.
If we have a satisfying assignment to the 3SAT formula, we assign 0 or 1 to yi’s according to what we
discussed above. This gives us a valid solution to the corresponding quadratic program.

3. If answer to X is NO, then answer to Y is NO; use contrapositive.
If we have a solution to the quadratic program, then they must correspond to 0/1 values that can be
translated to a satisfying 3SAT assignment.

4 Tripartite Matching to SUBSET SUM

Tripartite matching: Given three sets U,V and W , each containing n vertices, and hyperedges (u,v,w),
where u∈U,v∈V and w∈W . A tripartite matching is a way of selecting n hyperedges, so that every vertex
is adjacent to a hyperedge. If we want to use n hyperedges to cover all 3n vertices, then we must use exactly
one vertex is each of the n edges. Is there is a tripartite matching in the given graph?

SUBSET SUM: given integers a1,a2, ...,an and a target m. Does a subset of these numbers sum up to m?

The dynamic program that you saw earlier is a pseudo-polynomial time algorithm because it is polynomial
in the range of the values that m could take, i.e., it is exponentially big in the number of bits to represent m
as binary digits.

4.1 Reduction from Tripartite Matching to SUBSET SUM

1. Given an instance X of Tripartite Matching, create an instance Y of SUBSET SUM.
Tripartite Matching wants you to select some hyperedges, and SUBSET SUM wants you to pick a
subset of number that sum up to a given target number.

Thus, hyperedges in Tripartite Matching should correspond to numbers in SUBSET SUM.

Idea: Use an intermediate problem. We use SUBSET VECTOR problem, so reduce from Tripartite
Matching to SUBSET VECTOR to SUBSET SUM.

SUBSET VECTOR: Given n vectors v1,v2, ...,vn and a target vector u. The answer is YES iff a
subset of these vectors sums up to u.
This is a strictly harder problem of the target problem. It is not easy to a dynamic program to solve
this.

4.1.1 Reduction from Tripartite Matching to SUBSET VECTORS

How do you map a hyperedge into a vector? What is the relation between a hyperedge and vertices? Here,
vertices can correspond to components of vectors. As a result, we have 3n vertices then the dimensions of
vectors will equal 3n. Example: (1,1,2) can get mapped to (100|100|010). We want the target vector then
to be (111|111|111), i.e., select n hyperedges so that each vertex is in exactly one hyperedge.
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4.1.2 Reduction from SUBSET VECTORS to SUBSET SUM

Each vector needs to be mapped to a number.

Idea (1): The simplest idea is to notice that in the construction, all the vectors we use are binary vectors. For
these vectors, we can just think of them as binary numbers. But this is not correct because the summation
of vectors is different from the sum of binary numbers. Example: (1,0,1,0)+ (0,1,1,0) = (0,1,2,0), but
1010+0110 = 1000 in binary.

Idea (2): Note that if there are no carry operations when summing numbers, then the previous idea can
work. How do me ensure this? Instead of using a binary number, we use a number with a larger basis so that
a carry operation cannot happen. Just need to choose base k to be large enough. For n 0/1 vectors, k > n is
enough.

We leave proving correctness as an exercise.
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