
COMPSCI 330: Design and Analysis of Algorithms Jan 15, 2019

Lecture 2: Divide and Conquer
Lecturer: Rong Ge Scribe: Haoming Li

2.1 Overview

There are three basic algorithm design techniques – divide-and-conquer, dynamic programming and greedy
algorithms. With divide-and-conquer, we break the problem into several unrelated sub-problems, then
combine the solutions to solve the original problem. A general framework of divide-and-conquer algorithms
is as follows:

Algorithm 1 Divide-and-Conquer

if the instance is small (base case) then
Solve the base case.

end if
Partition the problem into smaller sub-problems.
Call Divide-and-Conquer recursively to solve the sub-problems
Call a Merge procedure to combine the results of the sub-problems.

Below are example applications of divide-and-conquer algorithms.

2.2 Merge Sort

We will first apply divide and conquer to the sorting problem: given an array a[1...n] of n numbers, sort the
numbers in ascending order.

Base Case: When an array contains only one number, it is considered sorted.

Partitioning: Break a[1...n] into two arrays b[], c[], where b[] contains the first half of the entries (a[1...n/2])
and c[] contains the second half of the entries (a[n/2 + 1...n]).

Recursive Calls: Recursively call the algorithm to sort each half of the array.

Merging: After the recursive call, the sub-problems b[] and c[] are both sorted. We now merge the two
sorted arrays into a single sorted array. This can be done efficiently by traversing each array once.

We have now finished designing the MergeSort algorithm. Below is the pseudo-code.

Algorithm 2 MergeSort(a[])

if length(a) < 2 then {Base case}
return a[]

end if
Partition a[] evenly to two arrays b[], c[]. {Divide}
b[] = MergeSort(b[])
c[] = MergeSort(c[]) {Recursive Calls}
return Merge(b, c) {Merge}

2-1



2-2 Lecture 2: Divide and Conquer

Algorithm 3 Merge(b[], c[])

Allocate an empty array a[]
i = 1, j = 1
while (i ≤ length(b) or (j ≤ length(c)) do
if b[i]< c[j] then

Append b[i] to a[], i = i + 1
else

Append c[j] to a[], j = j + 1
end if

end while
return a[]

Note that in the Merge pseudo-code we didn’t handle the case when one of the list is already empty and the
other list is not (i > length(b) or j > length(c)). In that case the remaining numbers should just be added
to the end of the array.

2.3 Running Time of Merge Sort

Next we will analyze the running time of MergeSort. Notice that the work of the algorithm can be put into
two categories: 1. the recursive cost, which is the time it takes to sort b[] and c[] recursively; 2. the merge
cost, which includes the cost of partitioning the array, and merging the result.

The merge cost is easy to analyze, as the merge algorithm makes one pass on both b and c. We can say the
running time of the merge algorithm is bounded by A · n where A is a constant (the constant depends on
the loop, maintaining i, j and cost of comparison).

For the recursive cost, we need to handle it by a recurrence relation. Let T (n) be the running time for
the MergeSort algorithm on n numbers, then the recursive cost is just T (n/2) (in this course we will not
talk about rounding errors, it is safe to assume n/2 is also an integer). Therefore, the running time of the
algorithm can be bounded by

T (n) = 2T (n/2) + An.

We call this formula a recurrence relation for the running time of MergeSort algorithm. To analyze the
running time, we need to solve the recurrence relation to get T (n) = O(f(n)) where f(n) is one of the
familiar functions like n2. There are several ways to do this.

2.3.1 Guess and Prove

The first method we will talk about is Guess and Prove. This method might look a bit mysterious (especially
the “guess” step). However this is a way to prove the running time rigorously and can often get the tightest
bound.

We first guess the running time of the algorithm. For MergeSort we will guess that T (n) ≤ An log2 n. This
guess can be obtained by evaluating the recurrence relation for small n, or by some other intuitive algorithm
such as the Recursion Tree method (discussed later).



Lecture 2: Divide and Conquer 2-3

We will prove T (n) ≤ An log2 n by induction. For the recurrence relation of algorithms, we are usually free
to assume whatever base cases as they will not change the running time of the algorithm by more than a
constant factor. In this case we assume T (1) = 0.

Proof: We first check the base case: T (1) = 0 ≤ A · 1 · log2 1.

Next, we perform induction. Assume T (x) ≤ Ax log2 x is true for all x < n, we are going to prove T (n) ≤
An log2 n.

To do that, we use the recurrence relation:

T (n) = 2T (n/2) + An Recurrence relation

≤ 2 ·A(n/2) log2(n/2) + An Induction Hypothesis on n/2

= An(log2 n− 1) + An Simplification: log2(n/2) = log2 n− 1.

= An log2 n

This finishes the induction. Therefore we know T (n) ≤ An log2 n is true for all n. The running time of the
algorithm is O(n log n).

2.3.2 Recursion Tree

Recursion tree is a more intuitive way for analyzing the running time of divide and conquer algorithms. To
use the recursion tree method, we draw a tree that includes all the recursive calls made by the algorithm
(see Figure 2.1). The nodes in the tree are divided into different layers corresponding to different depth of
the recursive call. The top layer of the recursion tree corresponds to the single call to the problem of size n,
the bottom layer of the recursion tree corresponds to the base cases.

Figure 2.1: Recursion Tree for MergeSort

To compute the running time, we use the following recursion tree lemma:

Lemma 2.1 The running time of the algorithm is equal to the sum of the merge costs for all the nodes in
the decision tree. In particular, if all nodes in the same layer are of the same size, then we have

T (n) =

depth∑
i=1

mi × ni.



2-4 Lecture 2: Divide and Conquer

Here depth is the number of layers in the tree, mi is the merge cost for each node at layer i, and ni is the
number of nodes at layer i.

Proof: We can prove this by induction. The induction hypothesis is that, for each node, its total cost is
equal to the sum of merge costs for all the nodes in the sub-tree rooted at this node. This is obviously true
for the leaves, because they correspond to the base cases (for base cases we define the merge cost to just be
the cost of the base case).

Induction step: Suppose this is true for all the children of a node u. By the recurrence relation we know the
time it takes to solve u is equal to the merge cost at u, plus the total cost for all children of u. By induction
hypothesis, the cost of a child v of u is equal to the sum of merge costs for all the nodes in the sub-tree
rooted at v. For the sub-tree rooted at u, a node is either u itself, or in the sub-tree rooted at one of the
children of u. Therefore the total running time for u is also equal to the sum of merge costs for all nodes in
the sub-tree rooted at u.

A more intuitive way of seeing this for the Example in Figure 2.1 is

T (n) = 2T (n/2) + An

= 4T (n/4) + 2 ·A · (n/2) + An

= 8T (n/8) + 4 ·A · (n/4) + 2 ·A · (n/2) + An the 3 additional terms are merge costs at layer 3, 2, 1 respectively

=

log2 n∑
i=1

2i−1 ·A · (n/2i−1)

=

log2 n∑
i=1

An

= An log2 n.

In particular, for this case ni (number of nodes at layer i) is 2i−1, mi (merge cost for each node at layer i)
is n/2i−1, and number of layers is log2 n.

2.4 Counting Inversions

The next example we look at is the problem of counting inversions. Given an array a[1..n], we say a pair
(i, j)(i, j ∈ {1, 2, ..., n}) is an inversion if i < j but a[i] > a[j]. The goal is to count how many inversions are
there for the array a[].

Intuitively the number of inversions is a way of measuring how far the array a[] is from sorted in ascending
order. If a is sorted then the number of inversions is 0. If the number of inversions is large, then we can
think of a as far from being sorted.

First Attempt As a first attempt, we will try to follow the idea of MergeSort. First, we split the array
into two halves, and count the inversions in each of them. Then we try to merge the result.

As an example, consider a[] = {6, 2, 4, 1, 5, 3, 7, 8}, which is an array with 9 inversions. After splitting, the
number of inversions in the two halves are 5 (for {6, 2, 4, 1}) and 1 (for {5, 3, 7, 8}). In order to count the
number of inversions for the entire array, we need to include the inversions that are entirely in one of the



Lecture 2: Divide and Conquer 2-5

two halves, and we also need to include the number of inversions between the two halves. In this case the
number of inversions between two halves is 3.

However, counting the number of inversions between the two halves is not very easy. Näıvely we can do
this by enumerating all the pairs, but that will take Θ(n2) time, which is no better than the brute force
algorithm.

Improved Algorithm To improve the algorithm, the key observation is that if we not only know the
number of inversions of the two parts, but we also know they are sorted, then counting the number of
inversions between the two parts is going to be simple.

When we are merging two sorted arrays into one, suppose b[i] < c[j] and we are putting element b[i] to the
sorted array. In this case, we know b[i] must be larger than c[1], c[2], ..., c[j− 1] (because those went into the
sorted array before b[i]), but b[i] is smaller than c[j]. Therefore the total number of inversions related to b[i]
is equal to j − 1. See the following pseudo-code.

Algorithm 4 CountingInversion(a[])

if length(a) < 2 then {Base case}
return a[], 0

end if
Partition a[] evenly to two arrays b[], c[]. {Divide}
b[], count b = CountingInversion(b[])
c[], count c = CountingInversion(c[]) {Recursive Calls}
a[], count bc = MergeCount(b, c) {Merge}
return a[], count b+count c+count bc

Algorithm 5 MergeCount(b[], c[])

Allocate an empty array a[]
i = 1, j = 1, count = 0
while (i ≤ length(b) or (j ≤ length(c)) do
if b[i]< c[j] then

Append b[i] to a[], i = i + 1
count = count + (j − 1)

else
Append c[j] to a[], j = j + 1

end if
return a[], count

end while

Running Time The recurrence relation of CountingInversion is exactly the same as the recurrence relation
of MergeSort. Therefore they also have the same running time Θ(n log2 n).


