
COMPSCI 330: Design and Analysis of Algorithms Spring 2019

Lecture 3: Divide and Conquer
Lecturer: Rong Ge Scribe: Shweta Patwa

3.1 Integer multiplication

Input: Two positive n digit integers, a and b.
Output: a ∗ b
The naive approach is to simply multiply the two numbers which takes O(n2) time because we need to
multiply each digit in one number with those in the second number, put them in the correct position and
add them as shown below.

3 8 4
5 6

2 3 0 4
1 9 2 0
2 1 5 0 4

×

Can we do better?

Suppose we are given a = 123456 and b = 654321. We can rewrite a as 123000 + 456 and b as 654000 + 321.
As a result, a ∗ b = 123 ∗ 654 ∗ 106 + (123 ∗ 321 + 456 ∗ 654) ∗ 103 + 456 ∗ 321.

Assume n is a power of 2. We partition a and b into lower and upper digits as a = a1 ∗ 10n/2 + a2 and
b = b1 ∗ 10n/2 + b2. Thus, the product becomes A ∗ 10n + (B + C) ∗ 103 + D, where A = a1 ∗ b1, B =
a2 ∗ b1, C = a1 ∗ b2 and D = a2 ∗ b2.

Recursion: Let T (n) be the running time to multiply two n-digit numbers, a and b.
Multiply(a, b):

1. WLOG assume n = length(a) = length(b), can pad 0’s for shorter number

2. if length(a) <= 1 then return a ∗ b
3. Partition a,b into a = a1 ∗ 10n/2 + a2 and b = b1 ∗ 10n/2 + b2

4. A = Multiply(a1, b1)

5. B = Multiply(a2, b1)

6. C = Multiply(a1, b2)

7. D = Multiply(a2, b2)

8. Return A ∗ 10n + (B + C) ∗ 10n/2 + D

Thus,

T (n) = 4T (
n

2
) + O(n)

3-1



3-2 Lecture 3: Divide and Conquer

where O(n) accounts for partitioning the given numbers, the addition operation(s) and shifting/padding.
We call this the ‘merge’ time.

T (n) = 4T (n/2) + A ∗ n (A*n indicates the merging cost at layer 0)

= 16T (n/4) + 4 ∗A ∗ n/2 + A ∗ n
= 64T (n/8) + 16 ∗A ∗ n/4 + 4 ∗A ∗ n/2 + A ∗ n

We can assume T (1) = 1 since we are doing asymptotic analysis. Overall cost of the function is the sum of
the merging cost of all layers. The number of layers l = log2 n.

T (n) =

log2 n∑
i=0

4iA
n

2i

= An

log2 n∑
i=0

2i

= An(2n− 1) = O(n2)

3.2 Improved algorithm

We can improve the algorithm by doing one of the following:

1. Merging faster: However, this is not the bottleneck for integer multiplication. O(n) is not large.

2. Make subproblems smaller: If we do this naively, then that would result in more number of subproblems
which defeats the purpose.

3. Decrease the number of subproblem: We see the details below.

Multiply(a, b) :

1. WLOG assume n = length(a) = length(b), can pad 0’s for shorter number



Lecture 3: Divide and Conquer 3-3

2. if length(a) <= 1 then return a ∗ b
3. Partition a,b into a = a1 ∗ 10n/2 + a2 and b = b1 ∗ 10n/2 + b2

4. A = Multiply(a1, b1)

5. B = Multiply(a2, b2)

6. C = Multiply(a1 + a1, b1 + b2)

7. Return A ∗ 10n + (C −A−B) ∗ 10n/2 + B

Thus,

T (n) = 3T (
n

2
) + O(n)

T (n) =

log2 n∑
i=0

3iA
n

2i

= An

log2 n∑
i=0

(
3

2
)i

= An
(3/2)log2 n+1 − 1

3/2 − 1

= O(n
3

2

log2 n

)

= O(n ∗ nlog2 3/2)

= O(nlog2 3)

= O(n1.585)

Even faster algorithms use fast Fourier analysis, which is beyond the scope of this class.

3.3 Master theorem

The Master Theorem acts as a ”cheat sheet” for basic recursions. Given T (n) = aT (n
b ) + f(n)):



3-4 Lecture 3: Divide and Conquer

1. If f(n) = O(nc), c < logb(a) then T (n) = Θ(nlogb a)

2. If f(n) = Θ(nc logt(n)), c = logb a then T (n) = Θ(nlogb a logt+1(n))

3. If f(n) = Θ(nc), c > logba then T (n) = Θ(nc)

Case 1: Merge cost is dominated by the cost of the last layer.

l := number of layers, and equals logb n.
number of nodes in layer l equals al, and the merge cost for this last layer equals nlogb a.
Example. When a = 4, b = 2 and f(n) = n: as seen for the first algorithm for integer multiplication, we get
O(nlog2 4).
When a = 3, b = 2 and f(n) = n: as seen for the second algorithm for integer multiplication, we get
O(nlog2 3).

Case 2: Addtional log factor shows up in the overall runtime because of the height of the recursion tree,
i.e., the number of layers.
Example. a = 2, b = 2 and f(n) = n: applies to mergesort and counting inversions which we saw in a
previous lecture. Here, we get O(n log n).

Case 3: Merge cost is dominated by the cost of the first layer.

Cannot improve further by reducing a. Can instead try to improve the merge cost from something smaller
than nc.
Example. Running time for the first attempt to counting the number of inversions. There, we had a = 2, b = 2
and f(n) = n2, which gave an overall runtime of O(n2).


