COMPSCI 330: Design and Analysis of Algorithms

Spring 2019

Lecture 3: Divide and Conquer

Lecturer: Rong Ge

Scribe: Shweta Patwa

3.1 Integer multiplication

Input: Two positive n digit integers, a and b. **Output:** a * b

The naive approach is to simply multiply the two numbers which takes $O(n^2)$ time because we need to multiply each digit in one number with those in the second number, put them in the correct position and add them as shown below.

	. /	3	8	4
	X		5	6
	2	3	0	4
1	9	2	0	
2	1	5	0	4

Can we do better?

Suppose we are given a = 123456 and b = 654321. We can rewrite a as 123000 + 456 and b as 654000 + 321. As a result, $a * b = 123 * 654 * 10^6 + (123 * 321 + 456 * 654) * 10^3 + 456 * 321$.

Assume n is a power of 2. We partition a and b into lower and upper digits as $a = a1 * 10^{n/2} + a_2$ and $b = b_1 * 10^{n/2} + b_2$. Thus, the product becomes $A * 10^n + (B + C) * 10^3 + D$, where A = a1 * b1, B = a2 * b1, C = a1 * b2 and D = a2 * b2.

Recursion: Let T(n) be the running time to multiply two n-digit numbers, a and b. Multiply(a, b):

- 1. WLOG assume n = length(a) = length(b), can pad 0's for shorter number
- 2. if $length(a) \le 1$ then return a * b
- 3. Partition a,b into $a = a1 * 10^{n/2} + a2$ and $b = b1 * 10^{n/2} + b2$
- 4. A = Multiply(a1, b1)
- 5. B = Multiply(a2, b1)
- 6. C = Multiply(a1, b2)
- 7. D = Multiply(a2, b2)
- 8. Return $A * 10^n + (B + C) * 10^{n/2} + D$

Thus,

$$T(n) = 4T(\frac{n}{2}) + O(n)$$

where O(n) accounts for partitioning the given numbers, the addition operation(s) and shifting/padding. We call this the 'merge' time.

$$\begin{split} T(n) &= 4T(n/2) + A * n & (A*n \text{ indicates the merging cost at layer 0}) \\ &= 16T(n/4) + 4 * A * n/2 + A * n \\ &= 64T(n/8) + 16 * A * n/4 + 4 * A * n/2 + A * n \end{split}$$

We can assume T(1) = 1 since we are doing asymptotic analysis. Overall cost of the function is the sum of the merging cost of all layers. The number of layers $l = \log_2 n$.

$$T(n) = \sum_{i=0}^{\log_2 n} 4^i A \frac{n}{2^i}$$

= $An \sum_{i=0}^{\log_2 n} 2^i$
= $An(2n-1) = O(n^2)$

3.2 Improved algorithm

We can improve the algorithm by doing one of the following:

- 1. Merging faster: However, this is not the bottleneck for integer multiplication. O(n) is not large.
- 2. Make subproblems smaller: If we do this naively, then that would result in more number of subproblems which defeats the purpose.
- 3. Decrease the number of subproblem: We see the details below.

Multiply(a, b):

1. WLOG assume n = length(a) = length(b), can pad 0's for shorter number

- 2. if length(a) <= 1 then return a * b
- 3. Partition a,b into $a = a1 * 10^{n/2} + a2$ and $b = b1 * 10^{n/2} + b2$
- 4. A = Multiply(a1, b1)
- 5. B = Multiply(a2, b2)
- 6. C = Multiply(a1 + a1, b1 + b2)
- 7. Return $A * 10^n + (C A B) * 10^{n/2} + B$

Thus,

$$T(n) = 3T(\frac{n}{2}) + O(n)$$

$$T(n) = \sum_{i=0}^{\log_2 n} 3^i A \frac{n}{2^i}$$

= $An \sum_{i=0}^{\log_2 n} (\frac{3}{2})^i$
= $An \frac{(3/2)^{\log_2 n+1} - 1}{3/2 - 1}$
= $O(n \frac{3^{\log_2 n}}{2})$
= $O(n * n^{\log_2 3/2})$
= $O(n^{\log_2 3})$
= $O(n^{1.585})$

Even faster algorithms use fast Fourier analysis, which is beyond the scope of this class.

3.3 Master theorem

The Master Theorem acts as a "cheat sheet" for basic recursions. Given $T(n) = aT(\frac{n}{b}) + f(n)$:

a nodes of size n/b each

Total cost:
$$a\left(\frac{n}{b}\right)^c = \frac{a}{b^c}n^c > n^c$$

- 1. If $f(n) = O(n^c), c < \log_b(a)$ then $T(n) = \Theta(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^c \log^t(n)), c = \log_b a$ then $T(n) = \Theta(n^{\log_b a} \log^{t+1}(n))$
- 3. If $f(n) = \Theta(n^c), c > \log_b a$ then $T(n) = \Theta(n^c)$

Case 1: Merge cost is dominated by the cost of the last layer.

l := number of layers, and equals $\log_b n$.

number of nodes in layer l equals a^l , and the merge cost for this last layer equals $n^{\log_b a}$.

Example. When a = 4, b = 2 and f(n) = n: as seen for the first algorithm for integer multiplication, we get $O(n^{\log_2 4})$.

When a = 3, b = 2 and f(n) = n: as seen for the second algorithm for integer multiplication, we get $O(n^{\log_2 3})$.

Case 2: Additional log factor shows up in the overall runtime because of the height of the recursion tree, i.e., the number of layers.

Example. a = 2, b = 2 and f(n) = n: applies to mergesort and counting inversions which we saw in a previous lecture. Here, we get $O(n \log n)$.

Case 3: Merge cost is dominated by the cost of the first layer.

Cannot improve further by reducing a. Can instead try to improve the merge cost from something smaller than n^c .

Example. Running time for the first attempt to counting the number of inversions. There, we had a = 2, b = 2and $f(n) = n^2$, which gave an overall runtime of $O(n^2)$.