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Suppose we have an infinite ladder:
1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, 

then we can reach the next rung.

From (1), we can reach the first rung. 
Then by applying (2), we can reach 
the second rung. Applying (2) again, 
the third rung. And so on.  We can 
apply (2) any number of times to 
reach any particular rung, no matter 
how high up.

This example motivates proof 
by mathematical induction.

Climbing an Infinite Ladder



Principle of Mathematical Induction
Principle of Mathematical Induction: To prove that P(n) is true 
for all positive integers n, we complete these steps:

Basis Step: Show that P(1) is true.
Inductive Step: Show that P(k) → P(k + 1) is true for all 
positive integers k.

To complete the inductive step, assuming the inductive 
hypothesis that P(k) holds for an arbitrary integer k, show that  
must P(k + 1) be true.

Climbing an Infinite Ladder Example:
Basis Step: By (1), we can reach rung 1.
Inductive Step: Assume the inductive hypothesis that we 
can reach rung k. Then by (2), we can reach rung k + 1.

Hence, P(k) → P(k + 1) is true for all positive integers k. We can 
reach every rung on the ladder.



Logic and Mathematical Induction

• Mathematical induction can be expressed  as the rule of 
inference

where the domain is the set of positive integers.

• In a proof by mathematical induction, we don’t assume that 
P(k) is true for all positive integers! We show that if we 
assume that P(k) is true, then P(k + 1) must also  be true. 

• Proofs by mathematical induction do not always start at the 
integer 1. In such a case, the basis step begins at a starting 
point b where b is an integer. We will see examples of this 
soon.

(P(1) ∧ ∀k (P(k) → P(k + 1))) → ∀n P(n),



• Mathematical induction is valid because of the well ordering 
property. 

• Proof:

– Suppose that P(1) holds and P(k) → P(k + 1) is true for all positive 
integers k. 

– Assume there is at least one positive integer  n for which P(n) is false. 
Then the set S of positive integers for which P(n) is false is nonempty. 

– By the well-ordering property, S has a least element, say m.

– We know that m can not be 1 since  P(1) holds. 

– Since m is positive and greater than 1, m − 1 must be a positive 
integer. Since m − 1 < m, it is not in S, so P(m − 1) must be true. 

– But then, since the conditional P(k) → P(k + 1) for every positive 
integer k holds, P(m) must also be true. This contradicts P(m) being 
false. 

– Hence, P(n) must be true for every positive integer n.

Why Mathematical Induction is Valid?



Proving a Summation Formula by 
Mathematical Induction

Example: Show that:  

Solution:

– BASIS STEP: P(1) is true since 1(1 + 1)/2 = 1.

– INDUCTIVE STEP: Assume true for P(k).

The inductive hypothesis is

Under this assumption,   



• Show that the sum of first n positive odd 
numbers is n2.

• We will do it on the board!

Exercise:



Example: Use mathematical induction to prove 
that n < 2n for all positive integers n.

Solution: Let P(n) be the proposition that n < 2n.

– Basis Step: (1) is true since 1 < 21 = 2.

– Inductive Step: Assume P(k) holds, i.e., k < 2k, for an 
arbitrary positive integer k.

– Must show that P(k + 1) holds. Since by the 
inductive hypothesis, k < 2k, it follows that:

k + 1 < 2k + 1 ≤ 2k + 2k = 2 ∙ 2k = 2k+1

Therefore n < 2n holds for all positive integers n.

Proving Inequalities



Example: Use mathematical induction to prove that 
2n < n!, for every integer n ≥ 4.

Solution: Let P(n) be the proposition that 2n < n!.
– Basis: P(4) is true since 24 = 16  < 4! = 24.
– Inductive Step: Assume P(k) holds, i.e., 2k < k! for an 

arbitrary integer k ≥ 4. To show that P(k + 1) holds: 
2k+1 = 2∙2k  

< 2∙ k! (by the inductive hypothesis)
< (k + 1)k!
= (k + 1)!

Therefore, 2n < n! holds, for every integer n ≥ 4. 

Proving Inequalities

Note: The basis step is P(4), since P(0), P(1), P(2),  and P(3) are all false.  



Example: Use mathematical induction to prove that n3 − n 
is divisible by 3, for every positive integer n.

Solution: Let P(n) be the proposition that 3 | (n3 − n).
– Basis: P(1) is true since 13 − 1 = 0, which is divisible by 3.
– Induction: Assume P(k) holds, i.e., k3 − k is divisible by 3, for 

an arbitrary positive integer k. To show that P(k + 1) 
follows: 

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1) − (k + 1) 
= (k3 − k) + 3(k2 + k)

By the inductive hypothesis, the first term (k3 − k) is divisible 
by 3 and the second term is divisible by 3 since it is an 
integer multiplied by 3. So by part (i) of Theorem 1 in 
Section 4.1 , (k + 1)3 − (k + 1) is divisible by 3. 

Therefore, n3 − n is divisible by 3, for every integer positive 
integer n.

Example



Strong Induction

Strong Induction: To prove that P(n) is true for all 
positive integers n, where P(n) is a propositional 
function, complete two steps:

Basis Step: Verify that the proposition P(1) is 
true.
Inductive Step: Show the conditional 
statement [P(1) ∧ P(2) ∧∙∙∙ ∧ P(k)] → P(k + 1)
holds for all positive integers k. 

Strong Induction is sometimes called 
the second principle of mathematical 
induction or complete induction.



Strong induction tells us that we can reach all 
rungs if:
1. We can reach the first rung of the ladder.
2. For every integer k, if we can reach the first k

rungs, then we can reach the (k + 1)st rung. 

To conclude that we can reach every rung by 
strong induction:
• BASIS STEP:  P(1) holds
• INDUCTIVE STEP: Assume P(1) ∧ P(2) ∧∙∙∙ ∧ P(k)

holds for an arbitrary integer k, and show that  
P(k + 1) must also hold.

We  will have then shown by strong induction that 
for every positive integer n, P(n) holds, i.e., we can 
reach the nth rung of the ladder.



Proof using Strong Induction

Example: Suppose we can reach the first and second rungs of 
an infinite ladder, and we know that if we can reach a rung, 
then we can reach two rungs higher. Prove that we can reach 
every rung.

Solution: Prove the result using strong induction.
• BASIS STEP: We can reach the first step.
• INDUCTIVE STEP:  The inductive hypothesis is that we 

can reach the first k rungs, for any k ≥ 2. We can reach 
the (k + 1)st rung since we can reach the (k − 1)st
rung by the inductive hypothesis.

Hence, we can reach all rungs of the ladder. 



• We can always use strong induction instead of  
mathematical induction. But there is no reason 
to use it if it is simpler to use mathematical 
induction. 

• In fact, the principles of mathematical 
induction, strong induction, and the well-
ordering property are all equivalent. 

• Sometimes it is clear how to proceed using one 
of the three methods, but not the other two. 

Strong vs Mathematical Induction



Example: Show that if n is an integer greater than 1, then n can be written as 
the product of primes.

Solution: Let P(n) be the proposition that n can be written as a product of 
primes.

– BASIS STEP: P(2) is true since 2 itself is prime.

– INDUCTIVE STEP: The inductive hypothesis is P(j) is true for all integers 
j with 2 ≤ j ≤ k. To show that P(k + 1) must be true under this 
assumption, two cases need to be considered:

• If k + 1  is prime, then P(k + 1) is true.

• Otherwise, k + 1  is composite and can be written as the product 
of two positive integers a and b with 2 ≤ a ≤ b < k + 1. By the 
inductive hypothesis a and b can be written as the product of 
primes and therefore k + 1 can also be written as the product of 
those primes.

Hence, it has been shown that every integer greater than 1 can be written 
as the product of primes.

Example



Example: Prove that every amount of postage of 12 cents or more can be 
formed using just 4-cent and 5-cent stamps. 

Solution: Let P(n) be the proposition that postage of n cents can be formed 
using 4-cent and 5-cent stamps.

– BASIS STEP: P(12), P(13), P(14), and P(15) hold.

• P(12) uses three 4-cent stamps.

• P(13) uses two 4-cent stamps and one 5-cent stamp.

• P(14) uses one 4-cent stamp and two 5-cent stamps.

• P(15) uses three 5-cent stamps.

– INDUCTIVE STEP: The inductive hypothesis  states that P(j) holds for 
12 ≤ j ≤ k, where k ≥ 15.  Assuming the inductive hypothesis, it can 
be shown that P(k + 1) holds. 

– Using the inductive hypothesis, P(k − 3) holds since k − 3 ≥ 12. To 
form postage of  k + 1 cents, add a 4-cent stamp to the postage for k
− 3 cents.

Hence, P(n) holds for all n ≥ 12.

Proof using Strong Induction



Recursive Definitions 
and 

Structural Induction



Definition:  A recursive or inductive definition  of a 
function consists of two steps.

– BASIS STEP: Specify the value of the function at zero.

– RECURSIVE STEP: Give a rule for finding its value at an 
integer from its values at smaller integers.

• A function f(n)  is the same as a sequence a0, a1, 
… , where ai, where f(i) = ai. 

Recursively Defined Functions



Define the Fibonacci sequence, f0 ,f1 ,f2,…, by:
– Initial Conditions:          f0 = 0, f1 = 1
– Recurrence Relation:    fn = fn-1 + fn-2

Example: Fibonacci Sequence

f-6 f-5 f-4 f-3 f-2 f-1 f0 f1 f2 f3 f4 f5 f6

-8 5 -3 2 -1 1 0 1 1 2 3 5 8



Recursive definitions of sets have two parts:
– The basis step specifies an initial collection of elements.
– The recursive step gives the rules for forming new 

elements in the set from those already known to be in the 
set.

• Sometimes the recursive definition has an exclusion 
rule, which specifies that the set contains nothing 
other than those elements specified in the basis step 
and generated by applications of the rules in the 
recursive step. 

• We will always assume that the exclusion rule holds, 
even if it is not explicitly mentioned. 

• We will later develop a form of induction, called 
structural induction, to prove results about recursively 
defined sets. 

Recursively Defined Sets and 
Structures



Examples
• Factorial of n

• n! = 1 if n = 0
• n! = n (n-1)!, otherwise

• Sum of first n odd numbers Sn

• Sn = 1 if n = 1
• Sn = Sn-1 + (2n – 1), otherwise

• Length of a string s ∊ Σ*: len(s)
• len(s) = 0 if s = ε
• len(sa) = len(s) + 1 if s ∊ Σ* and a ∊ Σ. 

• Sorting n numbers: SORT(<a1, …, an>)
• <a1> = SORT(<a1, …, an>) if n = 1
• SORT(<a1, …, an>) = <min(<a1, …, an>), 

SORT  <a1, …, an> - < min(<a1, …, an>)>) 



Definition: Two strings can be combined via the 
operation of concatenation. Let Σ be a set of 
symbols and Σ* be the set of strings formed from 
the symbols in Σ. We can define the 
concatenation of two strings, denoted by ∙, 
recursively as follows.
BASIS STEP: If w  Σ*, then w ∙ ε = w.
RECURSIVE STEP: If w1  Σ* and w2  Σ* and x  Σ, then

w ∙ (w2 x)= (w1 ∙ w2)x.

• Often w1 ∙ w2 is written as w1 w2.
• If w1  = abra and w2  = cadabra, the 

concatenation w1 w2 = abracadabra.

String Concatenation



Example: Give a recursive definition of the set  
of balanced parentheses P.

Solution:

BASIS STEP: () ∊ P

RECURSIVE STEP: If w ∊ P, then () w ∊ P,  (w) ∊ P and       
w () ∊ P.

• Show that (() ()) is in P.

• Why is ))(() not in P?

Balanced Parentheses



Definition: The set of well-formed formulae in 
propositional logic involving T, F, propositional 
variables, and operators from the set {¬,∧,∨,→,↔}.
BASIS STEP: T,F, and s, where s is a propositional variable, 

are well-formed formulae.

RECURSIVE STEP: If E and F are well formed formulae, then 
(¬ E),  (E ∧ F), (E ∨ F), (E → F), (E ↔ F), are well-formed 
formulae.

Examples: ((p ∨q) → (q ∧ F)) is a well-formed formula.

pq ∧  is not a  well formed formula.

Well-Formed Formulae in 
Propositional Logic



Definition: To prove a property of the elements of a 
recursively defined set, we use  structural 
induction. 
BASIS STEP: Show that the result holds for all elements 

specified in the basis step of the recursive definition.
RECURSIVE STEP: Show that if the statement is true for 

each of the elements used to construct new elements 
in the recursive step of the definition, the result holds 
for these new elements. 

• The validity of structural induction can be shown 
to follow from the principle of mathematical 
induction. 

Structural Induction



Definition: The set of full binary trees can be 
defined recursively by these steps.
BASIS STEP: There is a full binary tree consisting of only 

a single vertex r.
RECURSIVE STEP: If T1 and T2 are disjoint full binary 

trees, there is a full binary tree, denoted by T1∙T2, 
consisting of a root r together with edges connecting 
the root to each of the roots of the left subtree T1 and 
the right subtree T2. 

Example: Full Binary Trees



Definition: The height h(T) of a full binary tree T is 
defined recursively as follows:
– BASIS STEP: The height of a full binary tree T consisting of 

only a root r is h(T) = 0.

– RECURSIVE STEP: If T1 and T2 are full binary trees, then the 
full binary tree T = T1∙T2 has height                                           
h(T) = 1 + max(h(T1),h(T2)).

• The number of vertices  n(T) of a full binary tree T
satisfies the following recursive formula:
– BASIS STEP: The number of vertices of a full binary tree T 

consisting of only a root r is n(T) = 1.

– RECURSIVE STEP: If T1 and T2 are full binary trees, then the  
full binary tree T = T1∙T2 has the number of vertices                                                                 

n(T) = 1 + n(T1) + n(T2).

Example: Full Binary Trees



Example: Full Binary Trees

Theorem: If T is a full binary tree, then   n(T) ≤ 2h(T)+1 – 1.

Proof: Use structural induction.
– BASIS  STEP: The result holds for a full binary tree consisting only of a 

root, n(T) = 1 and h(T) = 0.  Hence, n(T) = 1 ≤ 20+1 – 1 = 1.

– RECURSIVE STEP:  Assume n(T1) ≤ 2h(T1)+1 – 1 and also  

n(T2) ≤ 2h(T2)+1  – 1 whenever T1 and T2 are full binary trees.

n(T)   =  1 + n(T1) + n(T2)                      (by recursive formula of n(T))

≤ 1 + (2h(T1)+1 – 1) + (2h(T2)+1 – 1)  (by inductive hypothesis)

≤ 2∙max(2h(T1)+1 ,2h(T2)+1 ) – 1 

= 2∙2max(h(T1),h(T2))+1 – 1 (max(2x , 2y)= 2max(x,y) )

= 2∙2h(t) – 1 (by recursive definition of h(T))

= 2h(t)+1 – 1

− 2 . 



Generalized Induction

• Generalized induction is used to prove results about sets other 
than the integers that have the well-ordering property. 

• For example, consider an ordering on N⨉ N, ordered pairs of 
nonnegative integers. Specify that (x1 ,y1) is less than or equal 
to (x2,y2) if either x1 < x2, or x1 = x2 and y1 <y2 . This is called 
the lexicographic ordering.

• Strings are also commonly ordered by a lexicographic 
ordering.

• The next example uses generalized induction to prove a result 
about ordered pairs from N⨉ N. 



Generalized Induction
Example: Suppose that am,n is defined for  (m,n) ∊ N ×N by               
a0,0 = 0 and 

Show that am,n = m + n(n + 1)/2 is defined for all    (m,n)∊N ×N.

Solution: Use generalized induction.
BASIS STEP: a0,0 = 0 = 0 + (0∙1)/2
INDUCTIVE STEP: Assume that am̍,n̍ =  m̍+ n ̍(n ̍ + 1)/2 
whenever(m̍,n ̍) is less than (m,n) in the lexicographic ordering 
of N ×N . 

 If n = 0, by the inductive hypothesis we can conclude 
am,n = am−1,n + 1 = m − 1+ n(n + 1)/2 + 1 = m + n(n + 1)/2 .

 If n > 0, by the inductive hypothesis we can conclude 
am,n = am−1,n + 1 = m + n(n − 1)/2 +n = m + n(n + 1)/2 .

− 2 . 


