
Midterm Exam 2, Compsci 201
Spring 2023, Duke University

March 22, 2023

General Directions

Before you begin, make sure to write your name and NetID on the exam, read the Duke com-
munity statement, and sign indicating your understanding and agreement to these directions.
You are encouraged to write your netid on every page of the exam where indicated in the event that pages

become separated during scanning.

Every question on the exam will have a box indicating where you should write your answer. If you continue

writing outside of the box, you must clearly indicate where or your answers may not be graded.

For all problems you should assume that any necessary libraries (for example, from java.util) are im-

ported. Where relevant, give the most tight analysis you can using big O notation. For example, if the

running time is O(N) then answering O(N
2
), while technically true, will not earn full credit.

You may not communicate with anyone while completing this exam. You may not discuss this exam with

anyone else on the day of the exam. You may not access any electronic devices (including but not limited

to phones, smartwatches, laptops, etc.) during the exam period. If you need to leave the exam room

during the exam period, you should not communicate with anyone and should not access any electronic

devices. You are allowed one 8.5x11 inch reference sheet, on which you should write your name and NetID

and submit along with your exam when you are finished.

Duke Community Standard
Duke University is a community dedicated to scholarship, leadership, and service and to the principles

of honesty, fairness, respect, and accountability. Citizens of this community commit to reflect upon and

uphold these principles in all academic and nonacademic endeavors, and to protect and promote a culture

of integrity.

To uphold the Duke Community Standard:

• I will not lie, cheat, or steal in my academic endeavors;

• I will conduct myself honorably in all my endeavors; and

• I will act if the Standard is compromised.

Print Name. NetID.

Signature. Date.

1

Sample Solution

1 public LinkedList <Integer > copy (LinkedList <Integer > list) {

2 LinkedList <Integer > newList = EXPR_1;

3 for (int val : list) { EXPR_2; }

4 return newList;

5 }

Figure 1: copy method.

1. (4 points). Consider the copy method outlined in Figure 1. Suppose list is a java.util LinkedList.

The method should create a separate copy of list in memory containing the same values in the same

order, and return the copy.

There are two missing expressions in the code. What should these be so that the code works correctly?

A. EXPR_1:

B. EXPR_2:

1 public boolean hasDuplicates (LinkedList <Integer > list) {

2 for (int i=0; i<list.size(); i++) {

3 for (int j=i+1; j<list.size(); j++) {

4 i f (list.get(i)==list.get(j)) { return true; }

5 }

6 }

7 return f a l s e ;
8 }

Figure 2: hasDuplicates method.

2. (4 points). Consider the hasDuplicates method defined in Figure 2. Suppose list is a java.util

LinkedList with N elements. What is the asymptotic runtime complexity of hasDuplicates(list)?

Briefly explain your answer.

2

new LinkedListe>c)

newList . add (ual)

0 (NZ)
.

There are IN- 1) + (N -2) + . . _ + I = 0(v2) iterations of the nested for loops on lines

2 and 3
,
and the get method

called on each iteration is 01N) for a linkedlist .

NetID:

1 public c la s s ListNode {

2 int info;

3 ListNode next;

4 ListNode(int x){

5 info = x;

6 }

7 ListNode(int x,

ListNode node) {

8 info = x;

9 next = node;

10 }

11 }

(a) ListNode class. Several questions

that follow refer to the ListNode class.

1 public s ta t i c void main(String [] args) {

2 ListNode node = new ListNode (1);

3 node.next = new ListNode (2);

4 node.next.next = new ListNode (3);

5 ListNode result = mutate(node);

6 ListNodeUtil.printList(result);

7 ListNodeUtil.printList(node);

8 }

9

10 s ta t i c ListNode mutate(ListNode node) {

11 ListNode temp = node.next;

12 node.next = node.next.next;

13 node = node.next;

14 node.next = temp;

15 temp.next = nul l ;
16 return node;

17 }

(b) mutate and main methods

Figure 3

3. (9 points). Suppose we run the main method defined in Figure 3b. The mutate method is defined in

the same figure. The ListNodeUtil.printlist(node) method prints the values in a singly linked list of

ListNode objects beginning at node.

A. What will be printed by line 6 of the mainmethod, ListNodeUtil.printList(result)? For example,

you could write (though it would not be correct), [1, 2, 3]. You do not need to explain your answer.

B. What will be printed by line 7 of the main method, ListNodeUtil.printList(node)? For example,

you could write (though it would not be correct), [1, 2, 3]. You do not need to explain your answer.

C. If we comment out line 4 of the main method (node.next.next = new ListNode(3);) then running

the code in the main method results in a null pointer exception during the execution of the mutate

method called on line 5. On what line of the mutate method does the null pointer exception occur?

Briefly explain your answer.

3

node
train

*
node
(matate)temp✓

[3,2]

[1. 3,2]

Line 14
.
After the update on line 13, node is null . Calling

"
.

"

anything on a null reference results in a

null pointer exception .

1 public ListNode merge(ListNode listA , ListNode listB) {

2 ListNode first;

3 i f (listA.info <= listB.info) {

4 first = listA; listA = listA.next;

5 }

6 e l se {

7 first = listB; listB = listB.next;

8 }

9

10 ListNode current = first;

11 while (listA != nul l && listB != nul l) {

12 i f (EXPR_1) {

13 current.next = listA; listA = listA.next;

14 }

15 e l se {

16 current.next = listB; listB = listB.next;

17 }

18 current = EXPR_2;

19 }

20

21 i f (EXPR_3) { current.next = listA; }

22 e l se { current.next = listB; }

23 return EXPR_4;

24 } Figure 4: merge method

4. (8 points). An incomplete outline of the merge method is shown in Figure 4 (note that lines 4, 7, 13,

and 16 each contain two assignment statements). The method takes as input ListNode listA and

ListNode listB, each a reference to the first node of a nonempty singly linked list of ListNode ob-

jects sorted from least to greatest. The method should merge these into a single list sorted from least to

greatest and return a reference to the first node of the merged list.

For example, if listA is [1, 2, 4] and listB is [3, 5, 6], then merge(listA, listB) should return

[1, 2, 3, 4, 5, 6]. No new nodes are created; listA and listB are merged directly.

There are four missing expressions in the code. What should these be so that the code works correctly?

You do not need to explain your answer.

A. EXPR_1:

B. EXPR_2:

C. EXPR_3:

D. EXPR_4:

4

lisc-A.info < list B.info (or ≤)

current . next

lista ! = null (or 1istB==nuH)

first

NetID:

1 public s ta t i c ListNode rec(ListNode list) {

2 i f (list == nul l) { return nul l ; }

3 i f (list.next == nul l) { return new ListNode(list.info); }

4 ListNode after = rec(list.next);

5 ListNode current = after;

6 while (current.next != nul l) {

7 current = current.next;

8 }

9 current.next = new ListNode(list.info);

10 return after;

11 }

Figure 5: rec method

5. (6 points). Suppose we call the recursive rec method (shown in Figure 5) on the inputs as shown below.

State what the resulting linked list returned would be. You do not need to explain your answers.

We represent the singly linked lists, for example, as [2, 0, 1], meaning the input is a reference to a

ListNode with info 2, which points to another ListNode with info 0, which points to another ListNode

with info 1. You should write your answers in the same format.

A. [1]:

B. [0, 1]:

C. [2, 0, 1]:

6. (3 points). State a recurrence relation of the form T (N) = ... that describes the runtime complexity of the

rec method as a function of N where N is the number of nodes of the input linked list. Briefly explain

your answer, referencing the code. You do not need to solve the recurrence.

5

[I]

[1,0]

[1. 0,2]

1- (N) = 1- (N - 1) +06N) .
Because:

↑
One recursive Input list is I
[

Non-recursive code is OCN)
call smaller on each

recursive call because of the white loop
on line 6.

1 // Assumes nums is sorted from least to greatest

2 public boolean adjacentSum(int [] nums , int target) {

3 int low = 0;

4 int high = nums.length -1;

5 while (low < high) {

6 int mid = (low + high)/2;

7 int check = EXPR_1;

8 i f (check == target) { return true; }

9 e l se i f (EXPR_2) { high = mid; }

10 e l se { EXPR_3; }

11 }

12 return EXPR_4;

13 }

Figure 6: adjacentSum method

7. (8 points). An incomplete outline of the adjacentSum method is shown in Figure 6. The method takes as

input an int[] nums that is sorted from least to greatest and an int target. The method should return

true if there exist adjacent values (that is, values nums[i] and nums[i+1] for some index i) in nums that

sum to target (that is, nums[i] + nums[i+1] == target), or false otherwise.

For example, if nums is {1, 2, 4, 8, 9} then adjacentSum(nums, 3) and adjacentSum(nums, 17)

should both return true, but adjacentSum(nums, 5) should return false.

There are four missing expressions in the code. What should these be so that the code works correctly and

e�ciently? The algorithm should run in O(log(N)) time where N is the length of nums. You do not need

to explain your answers.

A. EXPR_1:

B. EXPR_2:

C. EXPR_3:

D. EXPR_4:

6

hums [mid] + nuns [mid +☐

check > target

low = mid +1

false

NetID:

1 public c la s s MatchComp implements Comparator <String > {

2 private String ref;

3 public MatchComp(String ref) { th i s .ref = ref; }

4

5 @Override

6 public int compare(String a, String b) {

7 return (-1) * (score(a) - score(b));

8 }

9

10 public int score(String strand) {

11 int common = 0;

12 int smallerLength = Math.min(ref.length (), strand.length ());

13 for (int i=0; i<smallerLength; i++) {

14 i f (ref.charAt(i)== strand.charAt(i)) { common ++; }

15 }

16 return common;

17 }

18 }

Figure 7: MatchComp Comparator

1 public s ta t i c void main(String [] args) {

2 MatchComp comp = new MatchComp("agtc");

3 String [] strands = new String []{"aaaa", "ggtc", "agag"};

4 Arrays.sort(strands , comp);

5 System.out.println(Arrays.toString(strands));

6 }

Figure 8: main method

8. (4 points). What will be printed by line 5 of the main (Figure 8)? Note that it references the Comparator

class defined in Figure 7 and prints the values of the array strands. For example, you could write (though

it would not be correct) {"aaaa", "ggtc", "agag"}. Briefly explain your answer.

9. (4 points). Suppose ref is a String of length L and comp = new MatchComp(ref);. Suppose myWords

is an array of N Strings, and each individual String has length M . What is the asymptotic runtime

complexity of Arrays.sort(myWords, comp)? Express your answer in big O notation with respect to

some combination of L, N , and M . Briefly explain your answer.

7

{ " ggtc
"

,

"

agag
"

,

"
aaaa

" }
. Strings are sorted according to a Matchcomp comparator with

ref string
"

agtc
" (line 2 of main) . The comparator, given two strings a and b

,
counts the number of

matching characters between a and ref and b and ref ,
' if a matches more then a negative value is

returned
,
so a comes earlier than b if it matches more characters than b. The

order stated is in

decreasing order
of matching characters with ref .

0 (mince ,M)N1og(ND.
We are sorting N strings

with a MatchComp Comparator , which uses

OCN login calls to compare . Compare is
linear in the smaller of L and M (see line 12

,
which

determines the loop bound on line 13
.) .

This page left intentionally blank. Feel free to use it for scratch work if desired.

8

