
Midterm Exam 3, Compsci 201
Spring 2022, Duke University

April 19, 2023

General Directions

Before you begin, make sure to write your name and NetID on the exam, read the Duke com-
munity statement, and sign indicating your understanding and agreement to these directions.
You are encouraged to write your NetID on every page of the exam where indicated in the event that pages

become separated during scanning.

Every question on the exam will have a box indicating where you should write your answer. Answers

outside of the corresponding box will not be graded.

For all problems you should assume that any necessary libraries (for example, from java.util) are im-

ported. Where relevant, give the most tight analysis you can using big O notation. For example, if the

running time is O(N) then answering O(N
2
), while technically true, will not earn full credit.

You may not communicate with anyone while completing this exam. You may not discuss this exam with

anyone else on the day of the exam. You may not access any electronic devices (including but not limited

to phones, smartwatches, laptops, etc.) during the exam period. If you need to leave the exam room during

the exam period, you should not communicate with anyone and should not access any electronic devices.

You are allowed one 8.5x11 in. reference sheet.

Duke Community Standard
Duke University is a community dedicated to scholarship, leadership, and service and to the principles

of honesty, fairness, respect, and accountability. Citizens of this community commit to reflect upon and

uphold these principles in all academic and nonacademic endeavors, and to protect and promote a culture

of integrity.

To uphold the Duke Community Standard:

• I will not lie, cheat, or steal in my academic endeavors;

• I will conduct myself honorably in all my endeavors; and

• I will act if the Standard is compromised.

Print Name. NetID.

Signature. Date.

1

Sample Solution



1 public c la s s TreeNode {

2 int info;

3 TreeNode left;

4 TreeNode right;

5 TreeNode( int x){

6 info = x;

7 }

8 TreeNode( int x, TreeNode lNode , TreeNode rNode){

9 info = x;

10 left = lNode;

11 right = rNode;

12 }

13 } Figure 1: TreeNode class. Several questions that follow refer to the TreeNode class.

(a) Binary Tree

1 public void traverse(TreeNode node) {

2 i f (node != nul l ) {

3 System.out.print(node.info + " ");

4 traverse(node.left);

5 traverse(node.right);

6 }

7 }

(b) traverse method.

Figure 2

1. (3 points). Consider the binary tree shown in Figure 2a. Suppose we call the traverse method defined

in Figure 2b on the root of this tree, the 8 node. What will be printed? You do not need to explain your

answers.

Answer:

2. (3 points). Again consider the binary tree shown in Figure 2a. Is this a binary search tree? Briefly explain

your answer.

Answer:

2

&3 12 7 10

Not a binary search tree. 7 is less than 8, butis in the subtree rooted atthe right child
of 1. Thus, for example, the binarysearch tree search algorithm would incorrectlyreport that
7 is not in this tree, because it would only search in the left subtree from the root.



NetID:

(a) Tree A (b) Tree B (c) Tree C

Figure 3: Three Example Binary Trees

3. (4 points). Consider the binary trees shown Figures 3a and 3b. Are these red-black trees? If so, state a

valid coloring (that is, for each node, say whether it is black or red, such that the overall result satisfies

the red-black tree properties) If not, briefly explain why there is no valid coloring.

A. Tree A, shown in Figure 3a

Answer:

B. Tree B, shown in Figure 3b

Answer:

4. (4 points). Consider the binary heap visualized in Figure 3c. We write the array representation of the

heap using the 1-indexing convention that leaves an X at the beginning to mark the blank position 0. For

example, we write the array representation of Figure 3c as: [X, 1, 5, 2, 7].

A. Suppose you add 3 and then 1 to the binary heap, reestablishing the binary heap invariants after each

addition. What would the array-representation of the resulting binary heap be? You do not need to

explain your answer.

Answer:

B. Suppose you remove the minimum value from the binary heap (as visualized in Figure 3c, without the

additions from the previous problem). After reestablishing the binary heap invariants, what would

the array-representation of the resulting binary heap be? You do not need to explain your answer.

Answer:

3

b

b

b

r r

*Es, is a red-black tree.
For example:can color 6.1, andblack and I and I red.

No, is not a red-black tree. The root (6) is required to be black, so there are I black

noder on the rightmort 6-snull path founting
null as black). Because a red node cannot have a red

child, at least 1 of the 4 or I noder mustbe black, so the 6-s4-51-snull path must have at least

3 black noder (again counting null as black).This would
violate the path property thatall

root to null

paths have the same number of black moder.

18. 1, 3, 1, 7,5,2]

IX, 2, 5,7]



1 public int size(TreeNode root) {

2 i f (root == nul l ) { return 0; }

3 return 1+size(root.left)+size(root.right);

4 }

5

6 public int largestPerfectSubtree(TreeNode root) {

7 i f (root == nul l ) { return EXPR_1; }

8 int lPerf = largestPerfectSubtree(root.left);

9 int lSize = size(root.left);

10 int rPerf = largestPerfectSubtree(root.right);

11 int rSize = size(root.right);

12 i f (lPerf== lSize && rPerf ==rSize && lPerf ==rPerf) {

13 return EXPR_2;

14 }

15 e l se i f (lPerf > rPerf) {

16 return EXPR_3;

17 }

18 e l se {

19 return EXPR_4;

20 }

21 }
(a) size and largestPerfectSubtree (b) Example Tree

Figure 4

5. (8 points). A binary tree is perfect if all interior (non-leaf) nodes have exactly two child nodes, and the

leaf nodes all have the same depth. In the example tree shown in Figure 4b, the overall tree is not perfect

because an interior node (the 4 node) has one child node. It still would not be perfect even if the 2 node

were removed, because then the 4 node would be a leaf at a di↵erent depth than the 10 and 15 leaf nodes.

It would be a perfect tree if we added a right child node to the 4 node.

Consider the code shown in Figure 4a. The size method is complete and correctly computes the number of

nodes in a binary tree (including the root node). The largestPerfectSubtree method is partially com-

plete. It should return the size of the largest perfect subtree. For example largestPerfectSubtree(root)

where root refers to the 8 node in the example shown in Figure 4b should return 3, because the largest

perfect subtree is the subtree rooted at the 13 node of size 3.

There are four expressions, EXPR_1, EXPR_2, EXPR_3, and EXPR_4 missing in the code shown. What should

the code be for these so that the method will work correctly? You do not need to explain your answers.

A. EXPR_1:

B. EXPR_2:

C. EXPR_3:

D. EXPR_4:

4

0

IPerf -rPerf+1 for equivalent)

I Perf

~Perf



NetID:

1 public int size(TreeNode root) {

2 i f (root == nul l ) { return 0; }

3 return 1+size(root.left)+size(root.right);

4 }

5

6 public int largestPerfectSubtree(TreeNode root) {

7 i f (root == nul l ) { return EXPR_1; }

8 int lPerf = largestPerfectSubtree(root.left);

9 int lSize = size(root.left);

10 int rPerf = largestPerfectSubtree(root.right);

11 int rSize = size(root.right);

12 i f (lPerf== lSize && rPerf ==rSize && lPerf ==rPerf) {

13 return EXPR_2;

14 }

15 e l se i f (lPerf > rPerf) {

16 return EXPR_3;

17 }

18 e l se {

19 return EXPR_4;

20 }

21 } (a) size and largestPerfectSubtree

(b) Recurrence Solutions

Figure 5

6. (6 points). Again consider the size and largestPerfectSubtree methods, the definitions of which are

repeated on this page in Figure 5a. This question will ask about the asymptotic runtime complexity of the

largestPerfectSubtree method as a function of N , where N is the number of nodes in the binary tree

rooted at root. You may assume that the missing expressions all have constant runtime complexity. Note

that solutions to common recurrence relations are provided in Figure 5b.

A. What is the asymptotic runtime complexity of largestPerfectSubtree on a balanced tree? Justify

your answer by stating and explaining a recurrence relation, referencing the code.

Answer:

B. What is the asymptotic runtime complexity of largestPerfectSubtree on an unbalanced tree?

Justify your answer by stating and explaining a recurrence relation, referencing the code.

Answer:

5

O/Nlog), which is the solution to the recurrence-t-> - Are
The runtime-

runtime of /
complexity of the

largestPerfect subtree
I recursive

runtime of 2 each size method.
on a balanced tree

call
recursive call, which

with N nodes. is on a subtree of

roughly half the
size

because the
tree is

balanced.

0 (NY, which is the solution of the recurrence -Wil+
F

-- / -The runtime

runtime. one recursive call on complexity of the
a subtree containing size method.

largestPerfect subtree up to N-l noder. Fine
on an

unbalanced butnot required to alsowith N nodes. include an additionalTri
term.



1 private boolean search( int start , int end) {

2 i f (start == end) {

3 System.out.print(end + " ");

4 return true;
5 }

6 i f (! visited.contains(start)) {

7 visited.add(start);

8 for ( int node: neighbors.get(start)) {

9 i f (search(node , end) == true) {

10 System.out.print(start + " ");

11 return true;
12 }

13 }

14 }

15 return f a l s e ;
16 }

(a) search method

(b) example graph with adjacency list

representation

Figure 6

7. (8 points). Consider the search method defined in Figure 6a. The method works with an unweighted

undirected graph where nodes have integer labels. The graph is represented by an adjacency list

Map<Integer, List<Integer>> neighbors; assume this is an instance variable of the same class accessible

to the search method. An example graph is drawn in Figure 6b along with its corresponding adjacency list

representation. We also initialize an initially empty HashSet<Integer> visited as an instance variable

accessible in search method.

A. What will be printed by running search(5, 2) on the graph shown in Figure 6b? Assume visited

is initially empty and that looping over the elements of a given List loops in the order shown in

Figure 6b. You do not need to explain your answer.

Answer:

B. What will be printed by running search(1, 4) on the graph shown in Figure 6b? Assume visited

is initially empty and that looping over the elements of a given List loops in the order shown in

Figure 6b. You do not need to explain your answer.

Answer:

C. Assume there are N nodes in the graph and each node is adjacent to at most 10 other nodes (that

is, the length of each List in the the adjacency list representation is at most 10). Assume that

neighbors is a HashMap and visited is a HashSet. What is the asymptotic runtime complexity of

the search method as a function of N? Briefly explain your answer.

Answer:

6

2 it

4 2301

OIN). The first time a node is recurred on, it is added to
the visited set;if the

algorithm recurses on the same node again it immediately return without

searching its neighbor. So we search the neighors from a given node justonce.

Since a node has at most 10 neighbors in this problem, we recurse on each node at most

10 times.There are N noder, and a give search method
has or complexity apartfrom

the recursive calls, so we get 0/) overall.



NetID:

1 public int degrees(Map <String , List <String >> friends ,

String start) {

2 Map <String , Integer > degrees = new HashMap <>();

3 MISSING_TYPE toConsider = MISSING_CONSTRUCTOR;

4 toConsider.add(start); degrees.put(start , 0);

5 while (toConsider.size() > 0) {

6 String name = toConsider.remove ();

7 for (String other : friends.get(name)) {

8 i f (EXPR_1) {

9 degrees.put(other , EXPR_2);

10 toConsider.add(other);

11 }

12 }

13 }

14 int maxDegree = 0;

15 for (String name : degrees.keySet ()) {

16 maxDegree = Math.max(maxDegree , EXPR_3);

17 }

18 return maxDegree;

19 }
(a) degrees method

Key Value
"Al" ["Bo", "Xi"]

"Bo" ["Al", "Xi"]

"Kat" ["Jen"]

"Jen" ["Xi", "Kat"]

"Xi" ["Al", "Bo", "Jen"]

(b) Example friends

map

Figure 7

8. (8 points). Consider the degrees method outlined in Figure 7a. The input to the method is a

Map<String, List<String>> friends where the value associated with a given key is the list of their

friends. An example is given in Figure 7b. Note that the friend relationship is symmetric. You can assume

that, as in the example, every string that appears in any value list is also a key in the Map.

The method should return the minimum degree k such that all keys in the Map are within k degrees of

separation from start. A key other is within k degrees of separation from start if start is a friend of

someone is a friend of someone else . . . is a friend of other, where the friend of relationship is invoked

at most k times. Hint: Recall the Erdos Numbers problem from discussion.

In the example given in Figure 7b, if start is "Al" then the method should return 3, because "Kat", the

most separated from "Al", is 3 degrees of separation away ("Al" is a friend of "Xi" is a friend of "Jen" is

a friend of "Kat").

What should the missing code be so that the method works correctly? You do not need to

explain your answers. You may assume that everyone is within some degree of separation from start.

A. MISSING_TYPE and MISSING_CONSTRUCTOR:

B. EXPR_1:

C. EXPR_2:

D. EXPR_3:

7

Queue (String) and new LinkedList())

↓degrees.contains dey other)

degrees.Get(name) + 1

degrees. get(name)



This page left intentionally blank for scratch work

8


