
Midterm 3: CompSci 201

Form A

Prof. Alex Steiger

April 17, 2024

General Directions

You should have an exam stapled with a separate answer sheet. Remove this answer sheet and verify it is
a bubble sheet on the front side and fill-in-the-blank sheet on the back. Before you begin, make sure to
indicate your name and NetID, and verify that your form matches the answer sheet. Do this in
addition to signing this exam copy.

This exam has 20 problems which are multiple choice (MC) and fill-in-the-blank problems of equal weight.
Some MC problems have as few as two choices for answers, but every problem has five bubbles on the sheet.
Fill in bubble “A” for every fill-in-the-blank problem, then write your actual answer on the
appropriate space on the back of the answer sheet. If you erase to change an answer, be sure to erase
completely.

You are welcome to use the exam itself for scratch work, but only your answer sheet will be graded.

For all problems you should assume that any necessary libraries (for example, from java.util) are imported.
Where relevant, give the most tight analysis you can using big O notation. For example, if the running time
is O(N) then answering O(N2), while technically true, will not be considered correct.

You may not communicate with anyone while completing this exam. You may not access any electronic
devices (including but not limited to phones, smartwatches, laptops, etc.) during the exam period. If you
need to leave the exam room during the exam period, you should not communicate with anyone and should
not access any electronic devices. You are allowed one 8.5x11 in. reference sheet that you bring with you.

You will have 60 minutes to complete the exam. When you are finished, turn in your answer sheet,
your signed exam copy, and your reference sheet.

The back of this first page contains code for the ListNode and TreeNode classes and common recurrences
and their solutions which you may find useful.

By taking this exam, you are intending to, and promising to, adhere to the Duke Community Standard.

Print Name. NetID.

Signature. Date.

This Exam is Form A, please mark your answer sheet accordingly.

1

Midterm Exam 3 NetID: CompSci 201, Spring 2024

Common recurrences, their solutions, and the ListNode and TreeNode classes used throughout the test (same
as lecture/APTs)

T(N) = T(N/2) + O(1) -> O(log N) public class ListNode {

T(N) = T(N/2) + O(N) -> O(N) int info;

T(N) = 2T(N/2) + O(1) -> O(N) ListNode next;

T(N) = 2T(N/2) + O(N) -> O(N log N) ListNode(int val) {

T(N) = T(N-1) + O(1) -> O(N) info = val;

T(N) = T(N-1) + O(N) -> O(N^2) }

T(N) = 2T(N-1) + O(1) -> O(2^N) ListNode(int val, ListNode node) {

info = val;

next = node;

}

public class TreeNode {

int info;

TreeNode left;

TreeNode right;

TreeNode(int val) {

info = val;

}

TreeNode(int val, TreeNode lNode, TreeNode rNode) {

info = val;

left = lNode;

right = rNode;

}

}

2

Midterm Exam 3 NetID: CompSci 201, Spring 2024

The HowHeavy APT on APT Quiz 2 asks one to find, in a binary tree with distinct values (no duplicates),
the sum of all values in the subtree rooted at the node with a given value target. If there is no such node
with value target, 0 is to be returned (the weight of an empty subtree). For example, for the binary tree
below, if target=8 then 26 should be returned and if target=10 then 0 should be returned (since 10 is not
present in the tree).

8

7 2

11

3

5

13 4

1

1 private int sumAll(TreeNode tree) {

2 i f (tree == nul l) return 0;

3 return EXPR_1;

4 }

5

6 private int weightIter(TreeNode tree , int target) {

7 i f (tree == nul l) return 0;

8 Stack <TreeNode > toExplore = new Stack <>();

9 TreeNode current;

10 EXPR_2;

11 while (! toExplore.isEmpty ()) {

12 current = toExplore.pop();

13 // LINE_3: if (???) { return ???; }

14 i f (current.left != nul l) toExplore.push(current.left);

15 i f (current.right != nul l) toExplore.push(current.right);

16 }

17 return 0;

18 }

Figure 1: weightIter method

Consider the incomplete solution above, called weightIter, which has access to helper function sumAll.
sumAll should return the sum of all values in the given tree.

PROBLEM 1: What is the missing statement for EXPR 1 in sumAll? Write it in the appropriate fill-in-the

blank area of the back of the answer sheet. Bubble A for this problem on the front of the answer
sheet.

PROBLEM 2: What is the missing statement for EXPR 2 in weightIter? Write it in the appropriate

fill-in-the blank area of the back of the answer sheet. Bubble A for this problem on the front of the
answer sheet.

PROBLEM 3: What is the missing line for LINE 3 in weightIter? It is of the form “if (???) return

???;” where ??? are expressions. Write it in the appropriate fill-in-the blank area of the back of the answer
sheet. Bubble A for this problem on the front of the answer sheet.

3

Midterm Exam 3 NetID: CompSci 201, Spring 2024

1 public int weightRec(TreeNode tree , int target) {

2 return weightHelp(tree , target , f a l s e);

3 }

4

5 public int weightHelp(TreeNode tree , int target , boolean found) {

6 i f (tree == nul l) return 0;

7 i f (EXPR_4) {

8 return tree.info + weightHelp(tree.left , target , true)
9 + weightHelp(tree.right , target , true);

10 } e l se {

11 return weightHelp(tree.left , target , f a l s e)

12 + weightHelp(tree.right , target , f a l s e);

13 }

14 }

Figure 2: weightIter method

Consider the incomplete solution above, called weightRec, which is a wrapper method for the recursive
method weightHelp.

PROBLEM 4: What is the missing statement for EXPR 4 in weightRec?

A. !found

B. tree.info == target

C. found || tree.info == target

D. !found && tree.info == target

PROBLEM 5: As described above, the HowHeavy APT assumes that the given binary tree contains distinct

values (no duplicates). Consider the following variant of problem where the tree may have duplicates: Given
a binary tree, possibly containing duplicate values, and a value target, return the sum of all values
that are contained in any subtree rooted at a node with given value target. That is, return the sum of
all values which are at or below a node with value target; the values being counted may be in different
subtrees. Which of weightIter and weightRec correctly solve this variant of the problem?

A. Neither solve this problem

B. weightIter is correct but not weightRec

C. weightRec is correct but not weightIter

D. Both solve this problem

4

Midterm Exam 3 NetID: CompSci 201, Spring 2024

1 public void traverse(TreeNode node) {

2 i f (node == nul l) return;

3 traverse(node.right);

4 System.out.println(node.info + " ");

5 traverse(node.left);

6 }

Figure 3: traverse method

Consider the traverse method shown in Figure 3. This recursive method prints the info values of all nodes
in the given tree in some order. The next two questions are about this method.

7 2

11

3

4

Figure 4: example tree

PROBLEM 6: What will be printed by calling the traverse method on the given binary tree in Figure 4?

Write it in the appropriate fill-in-the blank area of the back of the answer sheet. Bubble A for this
problem on the front of the answer sheet.

PROBLEM 7: What is the asymptotic runtime of traverse on any binary tree in terms of N , the number

of nodes? The table of recurrence relations and their solutions on the back of the cover page may be useful.

A. O(logN)

B. O(N)

C. O(N logN)

D. O(N2)

E. Cannot be determined—it depends on the balancedness of the tree

PROBLEM 8: A binary tree is full and complete if every level of the tree has as many nodes as possible,

i.e., the level with the root has one node, the next level below has two nodes, the next level thereafter has
four nodes, and so on. In a full and complete binary tree with N nodes, what best characterizes the height
of the root, i.e., the number of edges on any root-to-leaf path?

A. O(logN)

B. O(N)

C. O(N logN)

D. O(N2)

E. O(2N)

5

Midterm Exam 3 NetID: CompSci 201, Spring 2024

8

42

3

5

7

8

72

3

5

6

8

46

3

5

9

8

5

Figure 5: four binary trees

PROBLEM 9: How many of the above binary trees in Figure 5 are binary search trees?

A. 0

B. 1

C. 2

D. 3

E. 4

PROBLEM 10: How many of the above binary trees in Figure 5 are binary heaps?

A. 0

B. 1

C. 2

D. 3

E. 4

PROBLEM 11: True or False: For any binary search tree, any value not already contained in the tree

can be inserted as a leaf of the tree so that it remains a binary search tree.

A. True

B. False

6

Midterm Exam 3 NetID: CompSci 201, Spring 2024

5 9

3

7

Figure 6: example heap

The next two problems are about the binary heap above in Figure 6. We write the array representation of
the heap using the 1-indexing convention that leaves an X at the beginning to mark the blank position 0.
For example, we write the array representation of the binary heap above as: [X, 3, 5, 9, 7].

PROBLEM 12: Suppose you add 4 and then 2 to this heap, in that order, one-by-one, using the insertion

procedure for array-based binary heaps from lecture. What is the array representation of the resulting heap,
using the format above? Write it in the appropriate fill-in-the blank area of the back of the answer sheet.
Bubble A for this problem on the front of the answer sheet.

PROBLEM 13: Suppose you remove the minimum value, 3, from this heap (without performing the

additions from the previous problem). What is the array representation of the resulting heap, using the
format above? Write it in the appropriate fill-in-the blank area of the back of the answer sheet. Bubble A
for this problem on the front of the answer sheet.

7

Midterm Exam 3 NetID: CompSci 201, Spring 2024

MrBeast (a popular YouTuber) is organizing their schedule. He has many events coming up that he may
be able to attend. Treating the current time as time 0, each event is specified by two integers, beginTime
and endTime, where beginTime is the number of hours from now that the event begins, and endTime is the
number of hours from now that the event will end. (For all events, beginTime < endTime.)

MrBeast wants to maximize the number of events that he can attend, which all have to satisfy two constraints:
(a) He can only attend one event at a time (there is only one of him, after all) and (b) any event must be
attended in full. For sake of this problem, suppose MrBeast can instantly attend an event that begins
immediately after another attended event; for example, he can attend an event that ends at hour 5 then
another event that begins at hour 5.

To decide the maximum number of events he can attend, he employs the following greedy strategy: From the
current moment in time (originally time 0 before all events start), choose the next event that ends earliest
among the events that begin later . This greedy strategy always returns the maximum number of events
that can be attended, the following code correctly implements this greedy strategy.

1 private c la s s Event {

2 int beginTime;

3 int endTime;

4 Event(int b, int e) { beginTime = b; endTime = e; }

5 }

6

7 public int maxEvents(List <Event > list) {

8 int count = 0;

9 int currTime = 0;

10 Comparator <Event > comp = (a,b) -> a.endTime - b.endTime;

11 PriorityQueue <Event > pq = new PriorityQueue <>(comp);

12 pq.addAll(list);

13 while (pq.size() > 0) {

14 Event current = pq.remove ();

15 i f (currTime <= current.beginTime) { // if begins later

16 currTime = current.endTime; // attend until end

17 count ++;

18 }

19 }

20 return count;

21 }

Figure 7: maxEvents method

8

Midterm Exam 3 NetID: CompSci 201, Spring 2024

PROBLEM 14: Suppose MrBeast’s possible events are as depicted below in Figure 8: at hours 1-4, 2-3,

3-7, 5-9, 6-10, 9-14, 10-11, and 12-15. What is the maximum number of events that MrBeast can attend?
[Hint: Run the algorithm above, or solve it through any other means. MrBeast can only attend events that
do not overlap at all or only overlap at their endpoints.]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160
Figure 8: example events

A. 2

B. 3

C. 4

D. 5

E. None of the above

PROBLEM 15: What is asymptotic runtime of maxEvents given a list of N events?

A. O(logN)

B. O(N)

C. O(N logN)

D. O(N2)

E. O(N2 logN)

9

Midterm Exam 3 NetID: CompSci 201, Spring 2024

As discussed in lecture, AVL trees are an implementation of self-balancing binary search trees. Let the height
of a node in a binary tree by the number of nodes on the longest path from that node to any leaf of the
tree. For example, leaf nodes have height 1, and the parent of two leaf nodes has height 2.

AVL trees use the concept of the balance factor of a node, which is the difference of the height of the node’s
right child and the node’s left child. For example, a leaf node has balance factor 0. The example binary
search tree in Figure 9 below shows each node’s balance factor inside the node; the actual values in the
search tree are not shown. In an AVL tree, a node is considered balanced if its balance factor is -1, 0, or 1.

The following method numBalanced correctly returns the number of nodes that are balanced in the given
tree. For example, it returns 7 for the example tree shown.

0

0 +1

+1

−3

−2

0 0

0

Figure 9: example AVL tree with balance factors

1 public int height(TreeNode node) {

2 i f (node == nul l) return 0;

3 return 1 + Math.max(height(node.left), height(node.right));

4 }

5

6 public int numBalanced(TreeNode node) {

7 i f (node == nul l) return 0;

8 int balFactor = height(node.right) - height(node.left);

9 int count = 0;

10 i f (-1 <= balFactor && balFactor <= 1) count ++;

11 count += numBalanced(node.left) + numBalanced(node.right);

12 return count;

13 }

Figure 10: numBalanced and height methods

PROBLEM 16: What is the asymptotic runtime complexity of numBalanced on an balanced tree in terms

of N , the number of nodes? The table of recurrence relations and their solutions on the back of the cover
page may be useful. [Hint: First, what is the asymptotic runtime of height?]

A. O(1)

B. O(logN)

C. O(N)

D. O(N logN)

E. O(N2)

10

Midterm Exam 3 NetID: CompSci 201, Spring 2024

PROBLEM 17: What is the asymptotic runtime complexity of numBalanced on an unbalanced tree in

terms of N , the number of nodes? The table of recurrence relations and their solutions on the back of the
cover page may be useful. [Hint: First, what is the asymptotic runtime of height?]

A. O(1)

B. O(logN)

C. O(N)

D. O(N logN)

E. O(N2)

11

Midterm Exam 3 NetID: CompSci 201, Spring 2024

1 public void RAFS(Map <Character , List <Character >> aList , char start) {

2 HashSet <Character > visited = new HashSet <>();

3 PriorityQueue <Character > toExplore =

4 new PriorityQueue <>(Comparator.reverseOrder ());

5 toExplore.add(start);

6 visited.add(start);

7 while (! toExplore.isEmpty ()) {

8 Character current = toExplore.remove ();

9 System.out.print(" " + current);

10 for (Character neighbor : aList.get(current)) {

11 i f (! visited.contains(neighbor)) {

12 visited.add(neighbor);

13 toExplore.add(neighbor);

14 }

15 }

16 }

17 }

Figure 11: RAFS method

Consider the RAFS method shown in Figure 11. This method performs a graph traversal, where the nodes in
toExplore are ordered in reverse alphabetical order as opposed to the temporal orderings of BFS and
DFS. The graph is represented by an adjacency list, and its nodes are represented by single characters. The
next two questions are about this method and the example graph below in Figure 12. The neighbors of each
node are ordered as shown in its adjacency list.

Figure 12: example graph

PROBLEM 18: What is printed when calling the method on the example graph and start = ‘C’?

A. F D E C B A

B. C B F A E D

C. C F E D B A

D. C B A D E F

E. None of the above

12

Midterm Exam 3 NetID: CompSci 201, Spring 2024

PROBLEM 19: Suppose we replace toExplore with a Queue instead of the PriorityQueue. Specifically,

suppose lines 3-4 are replaced with

Queue<Character> toExplore = new LinkedList<>();

With this modification, what is printed when calling the method on the example graph and start = ‘C’?

A. F D E C B A

B. C B F A E D

C. C F E D B A

D. C B A D E F

E. None of the above

PROBLEM 20: True or False: There exists graphs where, when starting from the same node, BFS and

DFS explore nodes in the same order.

A. True

B. False

13

Midterm Exam 3 NetID: CompSci 201, Spring 2024

This page intentionally left blank. You may use it for scratch if you wish, but you should submit it with the
exam.

14

