Midterm 3: Compsci 201
Form B

Profs. Astrachan and Nemecek

November 19/20, 2025

Name:

NetID:

In submitting this test, I affirm that I have followed the Duke Community Standard.

Community standard acknowledgement (signature)

You should bubble in answers for 25 questions on this exam.

The bubble sheet is for multiple choice questions. On the other/back side you’ll find areas for fill-in-the
blank questions. Please bubble in an answer for every question, choosing Option A for fill-in-the-blank
questions as directed.

Common Recurrences and their solutions:

label recurrence solution
A T(n) = T(n/2) + 0(1)  O(logn)
B T(n) = T(n/2) + 0(n) O(n)

c T(m) = 2T(n/2) + 0(1) O(n)

D T(n) = 2T(n/2) + 0(n) O(nlogn)
E T(n) = T(n-1) + 0(1) O(n)

F T(n) = T(n-1) + 0(n) O(n?)

G T(m) = 2T(n-1) + 0(1) O(2")

This Exam is Form B, please make sure your answer sheet is marked
accordingly!



Midterm Exam 3 Form B 201 Fall 2025

TreeNode and ListNode classes as used on this test. In some problems the type of the info field may change
from int to String and wice versa.

public class TreeNode { public class ListNode {
String info; int info;
TreeNode left; ListNode next;
TreeNode right; ListNode(int val) {
info = val;
TreeNode (String x){ }
info = x; ListNode(int val,
} ListNode 1link){
TreeNode (String x,TreeNode 1Node, info = val;
TreeNode rNode){ next = link;
info = x; }
left = 1Node; b

right = rNode;

Tree Traversal Code

public void inOrder(TreeNode root) { public void preOrder(TreeNode root) {
if (root != null) { if (root != null) {
inOrder (root.left); System.out.println(root.info);
System.out.println(root.info); preOrder (root.left);
inOrder (root.right); preOrder (root.right);
} }
} }

public void postOrder(TreeNode root) {
if (root != null) {
postOrder (root.left);
postOrder (root.right) ;
System.out.println(root.info);

This Exam is Form B, please make sure your answer sheet is marked
accordingly!



Midterm Exam 3 Form B 201 Fall 2025

The next three problems are about P5: Percolation, in which you ran simulations using different models to
estimate what’s called the percolation threshold.
PROBLEM 1:

The code below is the method PercolationDefault.search, a recursive version of depth-first search.

iTa 7

142 protected void search(int row, int col) {
143 // out of bounds?

144 if (! inBounds(row,col)) return;

145

146 // full or NOT open, don't process
147 if (isFull(row, col) || !isOpen(row, col)){
148 return;

149 }

150 myGrid[row] [col] = FULL;

151 search(row — 1, col);

152 search(row, col - 1);

153 search(row, col + 1);

154 search(row + 1, col);

155 }

The code above visits the neighbor(s) of a cell in the order up-left-right-down. If lines 151-154 are shuffled
into another order, e.g., left-right-down-up (there are 24 such orders) will the estimate of p*, the percolation
threshold, change?

A. The estimate will not change. It’s possible that timings will not be identical, but they will be similar.

B. The estimate will change. Going up first provides a better estimate of p* since the top is the area from
which water flows.

C. It cannot be determined if the estimate will change.

PROBLEM 2:

The class PercolationDefault uses a recursive version of depth-first search. You were asked to write
PercolationDFS that uses a java.util.Stack object rather than recursion.

Does PercolationDFS allow for bigger grids to be explored/simulated than PercolationDefault?
A. No, the maximum grid size that can be explored/simulated is the same for both.
B. Yes, the maximum grid size that can be explored/simulated is greater with PercolationDFS.

C. The answer depends on the seed of the Random Number generator used to open cells.



Midterm Exam 3 Form B 201 Fall 2025

The next three questions are about P4: Autocomplete.

PROBLEM 3:

The classes BruteAutocomplete and BinarySearchAutocomplete return the same value for the method
sizeInBytes when they're constructed from the same data, calculated from the instance variable
Term[] myTerms that they each have.

The class HashListAutocomplete does not store this instance variable. When a HashListAutocomplete
object hasher is constructed from the same data as the other two classes, which one of the following is true
about the value returned by a correct implementation of hasher.sizeInBytes()?

A. The value is less than what’s returned by the other classes constructed from the same data.

B. The value is equal to what’s returned by the other classes constructed from the same data.

C. The value is greater than what’s returned by the other classes constructed from the same data.

PROBLEM 4:
You were given code for BruteAutocomplete and you were asked to implement BinarySearchAutocomplete
and HashListAutocomplete as part of P4, that’s three Autocomplete classes.

These three classes worked with two client classes AutocompleteMain and BenchMarkForAutocomplete.
Which of the following best explains why these last two classes could work with all three Autocomplete
classes?

A. Each of the three classes implement the Autocompletor interface and the two client classes are written
to work with that interface.

B. The two client programs have sequences of if statements for the code to determine which version of
an Autocomplete class to call.

C. There are three versions of each client program: one for each Autocomplete class.

PROBLEM 5:

Which best explains why you were asked to write method BinarySearchlLibrary.firstIndex instead of
relying on the java.util.BinarySearch class, which runs in O(log(n)) time, to find a value in a list of n
values?

A. The Java library generates an exception when the list is too large and the calculation of
(first+last)/2 generates integer overflow.

B. The Java library returns a value matching the search term, but not necessarily the value with the
lowest index when more than one value matches the search term.

C. Implementing a function even when it’s in a standard library teaches you how to test and develop code,
and in this case that development used a loop invariant.



Midterm Exam 3 Form B 201 Fall 2025

The code shown below sorts its parameter 1ist.

5 public void sortPQ(List<String> list) {

6 PriorityQueue<String> pq =

7 new PriorityQueue<>(Comparator.comparing(String::length));
8 pg.addAll(list);

9 list.clear();

10 while (pq.size() > 0) {
11 list.add(pq.remove());
12 }

13 }

PROBLEM 6:

If 1ist contains N elements, what is the runtime of sortPQ(1list) 7
A. O(N)
B. O(Nlog(N))
C. O(N?)

PROBLEM T7:

If the contents of list are
list = ["burgundy", "vermillion", "maroon", "red"]
What are the contents of 1ist after the call sortPQ(1list)?
A. [burgundy, vermillion, maroon, red]
[red, maroon, burgundy, vermillion]

B
C. [burgundy, maroon, red, vermillion]
D

[vermillion, burgundy, maroon, red]



Midterm Exam 3 Form B 201 Fall 2025

PROBLEM 8:

Consider an ArrayList<String> list with values as shown:

[one, two, two, three, three, three, four, four, four, four]

What are the contents of 1ist after the call mapSort (1ist)?

25
26
27
28
29

S aw>»

public void mapSort(List<String> list) {
Map<String,Integer> map = new HashMap<>();
for(String s : list) {
map.put(s, map.getOrDefault(s, 0)+1);
}

list.clear();
list.addAll(map.keySet());
Collections.sort(list, Comparator.comparing(map::get));

[one, two, two, three, three, three, four, four, four, four]
[four, one, two, three]
[one, two, three, four]

[four, three, two, one]

PROBLEM 9:

Does the order of the values in parameter 1ist when method mapSort finishes change if new TreeMap<>()
replaces new HashMap<>() on line 267

A.

There is some parameter list for which the order of the values will change if new TreeMap<>() is
used, but not for all values of 1ist.

The order of values in 1ist will always be the same when TreeMap is used instead of HashMap.

The order of values in 1ist will always be different when TreeMap is used instead of HashMap.



Midterm Exam 3 Form B 201 Fall 2025

PROBLEM 10:

Consider a stack st holding the values shown below, with orange at the top of the stack and cherry at the
bottom, i.e., cherry was pushed onto the stack first.

st = ["cherry", "guava", "mango", "orange"]
The call st = repeat(st) stores values in st as shown below (cherry now at the top of the stack):
st = ["orange", "mango", "guava", "cherry"]

20 public static Stack<String> repeat(Stack<String> st) {

21 List<String> list = new ArraylList<>();
22 while (st.size() > @) list.add(st.pop());
23 for(String s : list) st.push(s);

24 return st;

25 }

If there are n calls of repeat nested, e.g.,
st = repeat(repeat(repeat(...(repeat(st)))));
What values of n will leave the order of elements in st unchanged after the nested calls?

A. n=2only
B. all nsuch thatn % 2 == 0 (even n).

C. all nsuch thatn % 2 == 1 (odd n).



Midterm Exam 3 Form B

201 Fall 2025

PROBLEM 11:

Consider the tree below.

What is printed as a result of the call traverse(root) if root points at Halibut?

170
171
172
173
174
175
176
177
178
179

public void traverse(TreeNode root) {

Queue<TreeNode> list = new LinkedList<>();

if (root != null) {

‘ list.add(root);

b

while (list.size() > 0) {
root = list.remove();
System.out.printf("%s\n", root.info);
if (root.right != null) list.add(root.right);
if (root.left != null) list.add(root.left);

Halibut, Catfish, Snapper, Bass, Grouper, Mackerel, Tuna, Cod
Halibut, Snapper, Catfish, Tuna, Mackerel, Grouper, Bass, Cod
Bass, Catfish, Cod, Grouper, Halibut, Mackerel, Snapper, Tuna

Halibut, Catfish, Bass, Grouper, Cod, Snapper, Mackerel, Tuna



Midterm Exam 3 Form B

201 Fall 2025

The next three problems use this tree.

PROBLEM 12:

The tree shown above is a search tree. If Haddock is added as the right child of Grouper, is the tree still a
search tree?

A.

B. No, it will no longer be a search tree

Yes, it will still be a search tree

PROBLEM 13:

What are the last four values visited in a post-order traversal of the tree shown above whose root is Halibut?

A.

B
C.
D

Halibut, Snapper, Mackerel, Tuna
Halibut, Mackerel, Tuna, Snapper
Mackerel, Tuna, Snapper, Halibut

Tuna, Mackerel, Snapper, Halibut

PROBLEM 14:

If Salmon and Pickerel are added to the tree, in that order, so that it is still a search tree, the height of the

resulting tree will be five rather than four as it is shown above.

If Pickerel is added first, and then Salmon, will the height of the resulting tree still be five?

A.
B.

Yes, it will be five

No, it will be four



Midterm Exam 3 Form B 201 Fall 2025

The next four problems concern a perfect binary tree. In such a tree every node except leaf nodes has two
children and all the leaves are at the same level. The diagram below shows two perfect trees:

One way to determine if a tree is perfect is: if it is true that for every node both: (1) its left and right
subtrees are perfect and (2) the height of the left subtree is equal to the height of the right subtree. The
code shown below captures this method of determining if a tree is a perfect tree. It returns true for both
trees shown above and, in general, returns true if and only if parameter root references a perfect tree.

133
134
135
136
137
138
139
140
141
142
143
144
145
146

public int height(TreeNode t){

if (t == null) return 0;

return 1 + Math.max(height(t.left),height(t.right));
}

public boolean isPerfect(TreeNode root) {
if (root == null) return true;
int lh = height(root.left);
int rh = height(root.right);

return isPerfect(root.left) &&
isPerfect(root.right) &&
lh == rh;

PROBLEM 15:

What is the runtime of isPerfect (root) if root is a roughly balanced tree of N nodes?

A. O(N)

B. O(Nlog(N))

C. O(N?)

PROBLEM 16:

What is the runtime of isPerfect(root) if root is a completely unbalanced tree of N nodes?

A. O(N)

B. O(Nlog(N))

C. O(N?)

10



Midterm Exam 3 Form B 201 Fall 2025

It can be proved that a binary tree T is perfect if and only if 2/¢"(T) _ 1 = size(T), so the method
isPerfect?2 shown below is correct.

53 public int height(TreeNode t){

54 if (t == null) return 0;

55 return 1 + Math.max(height(t.left),height(t.right));
56 }

57 public int size(TreeNode t){

58 if (t == null) return 0;

59 return 1 + size(t.left) + size(t.right);

60 }

108 public boolean isPerfect2(TreeNode root) {

109 int height = height(root);

110 int size = size(root);

111

112 return (int) Math.pow(2,height) - 1 == size;
113}

PROBLEM 17:

What is the runtime of isPerfect2(root) when root is a roughly balanced tree of N nodes?
A. O(N)
B. O(Nlog(N))
C. O(N?)

PROBLEM 18:

What is the runtime of isPerfect2(root) when root is a completely unbalanced tree of N nodes?
A. O(N)
B. O(Nlog(N))
C. O(N?)

11



Midterm Exam 3 Form B 201 Fall 2025

In a perfect tree, every node has either zero children (leaves) or two children (internal nodes). The method
oneChildCount below is intended to return the number of nodes in its parameter that have exactly one child
(neither zero nor two).

171 public int oneChildCount(TreeNode root){

172 if (root == null) return 0;

173 int countMe = 0;

174 if ((root.left != null && root.right == null) ||
175 (root.left == null && root.right != null)){
176 countMe = Yﬁkﬁﬁ:

177 }

178 int lcount = RECURSIVE_CALL_A;

179 int rcount = RECURSIVE_CALL_B;

180 return countMe + lcount + rcount;

181 }

PROBLEM 19:
Bubble A for this question on the front of the answer sheet and fill-in-the blank area for this
question on the back of the bubble answer sheet.

Assuming lines 178 and 179 are filled in correctly, what should VALUE be on line 176 so that the code works
correctly?

PROBLEM 20:

Bubble A for this question on the front of the answer sheet and fill-in-the blank area for this
question on the back of the bubble answer sheet.

If lines 176 and 179 are are completed correctly, what is the value of RECURSIVE_CALL_A on line 178 so that
the code works correctly? (Note: RECURSIVE_CALL_B is similar, but you are not asked about line 179.)
PROBLEM 21:

If lines 176, 178, and 179 are filled in correctly, the runtime of oneChildCount will be the same whether its
tree parameter is roughly balanced or completely unbalanced. What is the runtime for a tree with NV nodes?

A. O(log(N))
B. O(N)

C. O(Nlog(N))
D. O(N?)

12



Midterm Exam 3 Form B 201 Fall 2025

Consider finding all root-to-leaf paths in a tree, and the related problem of finding the longest root-to-leaf
path in a tree. For the tree shown below, the longest path would be 1-3-5-7 (or 1-3-5-8 which has the
same maximal length).

.
@@
\

@ 9

PROBLEM 22:

If there are N leaves in a tree, there will be N root-to-leaf paths in the tree. What is the shortest possible
longest root-to-leaf path in a tree with N leaves (consider the tree of N leaves that has minimal height)?

A. O

(
B. O
C. O(Nlog(N))
D. O(

PROBLEM 23:

If there are N leaves in a tree, there will be N root-to-leaf paths in the tree. What is the longest possible
root-to-leaf path in a tree with N leaves (consider the tree of N leaves that has maximal height)?

A. O(log(N))

o)

N)

o)

(
B. O
C. O(Nlog(N))
D. O(N?)

13



Midterm Exam 3 Form B 201 Fall 2025

The code below returns a maximal root-to-leaf path in the tree passed as a parameter. For the tree shown
above, it will return 1-3-5-8 (which is one of two longest paths).

181 public int height(TreeNode t){

182 if (t == null) return 0;

183 return 1 + Math.max(height(t.left),height(t.right));
184 }

185 |

186 public String deepLeafPath(TreeNode root){
187 if (root == null) return "";

188 if (root.left == null && root.right == null) {
189 return ""+root. info;

190 }

191 int lheight = height(root.left);

192 int rheight = height(root.right);

193

194 String 1lpath = null;

195 if (lheight > rheight) {

196 lpath = deepLeafPath(root.left);
197 }

198 else {

199 lpath = deepLeafPath(root.right);
200 }

201 return ""+root.info + "-" + 1path;

202 }

PROBLEM 24:

What is the runtime of deepLeafPath(t) when t is a roughly balanced tree of N nodes?
A. O(N)
B. O(Nlog(N))
C. O(N?)

PROBLEM 25:

What is the runtime of deepLeafPath(t) when t is a completely unbalanced tree of N nodes?
A. O(N)
B. O(Nlog(N))
C. O(N?)

14



