
Test 1 : Compsci 201

Owen Astrachan

October 11, 2019

Name:

NetID/Login:

Community standard acknowledgment (signature)

(1 point for name, netid)

value grade

Problem 1 20 pts.

Problem 2 8 pts.

Problem 3 12 pts.

Problem 4 34 pts.

TOTAL: 75 pts.

This test has 11 pages, be sure your test has them all. Write your NetID clearly on each page of this test

(worth 1 point).

In writing code you do not need to worry about specifying the proper import statements. Don’t worry

about getting function or method names exactly right. Assume that all libraries and packages we’ve discussed

are imported in any code you write. You can write any helper methods you would like in solving the problems.

You should show your work on any analysis questions.

You may consult your six (6) note sheets and no other resources. You may not use any computers, calculators,

cell phones, or other human beings. Any note sheets must be turned in with your test.

1

Owen Astrachan
Answer Key for Midterm

Test 1 NetID: 201 Fall 2019

PROBLEM 1 : (IO, IO, it’s o↵ to work (20 points))

Part A: 12 points

What is printed by each System.out.printf statement? There are four statements, each prints three values.

Write the values below each printf statement.

String s = new String("DUKE");
String t = s;
String u = t.toLowerCase();

System.out.printf("%s \t %s\t %s\n",s, t, u);

t = t + t;
s = "ROCKS";

System.out.printf("%s \t %s\t %s\n",s, t, u);

String[] a = {"one", "two", "three", "four"};
String[] b = Arrays.copyOf(a,a.length);
String[] c = a;

System.out.printf("%s \t %s \t %s \n",a[0],b[0],c[0]);

a[3] = "go";

System.out.printf("%s \t %s \t %s \n",a[3],b[3],c[3]);

2

Owen Astrachan
DUKE DUKE duke

Owen Astrachan
ROCKS DUKEDUKE duke

Owen Astrachan
one one one

Owen Astrachan
go four go

Test 1 NetID: 201 Fall 2019

Part B: 8 points

Write one of: True, False, or cannot be determined. Explain/Justify each answer

• If two string variables s and t have di↵erent hash code values, that is s.hashCode() != t.hashCode(),
then what is the the value of s.equals(t)?

• If two string variables s and t have s.equals(t) is true; what is the the value of s == t)?

• If two string variables s and t have s.equals(t) is false; what is the value of

s.hashCode() == t.hashCode().

• If two string variables s and t have s.equals(t) is true; and s.hashCode() == 7; what is the value

of t.hashCode() == 7?

3

Owen Astrachan
False, two strings that are equal must have the same hashCode.

Owen Astrachan
Cannot be determined. The variables s and t may point to/reference the same string, so s == t. But
it’s also possible that they point to different strings that have the same characters in which case s != t

Owen Astrachan
Cannot be determined. Two different strings can have the same hashcodes, e.g., when there are collisions
as we saw in class with “snitz” and “unprecludable” having the same hashcodes. But for many cases of unequal
Strings the hashcodes will be different.

Owen Astrachan
true. equal strings have the same hashcode, so if s has 7 as hashcode then so does t

Test 1 NetID: 201 Fall 2019

PROBLEM 2 : (I Sing Electric (8 points))

The code below is the implementing code from a version of the CelestialBody class that passes all tests for

the method calcNetForceExertedByY.

Part A (4 points)

The CelestialBody class has no overloaded operator for .equals() — if the expression (b != this) in

the code above is replaced by (! b.equals(this)) will the code still pass all tests? Explain.

Part B (4 points)

The code below is from the simulation code in NBody.java and illustrates the call of method

calcNetForceExertedByY shown above. Which of the three expressions from this calling code (line 98)

corresponds to this in the implementing code (line 121 above):

Explain your answer in few words.

1. bodies[k]

2. bodies

3. yforces[k]

4

Owen Astrachan
Yes, tests pass. Since there is no overloaded .equals, the default .equals will be used. The default
.equals simply uses == to compare two objects, so ! b.equals(this) is the same as b != this

Owen Astrachan
bodies[k] — this is the object on which calcNetForceExertedByY is
called as seen in the code since bodies[k] is to the left of the dot/.

So bodies[k] is this in the code.

Test 1 NetID: 201 Fall 2019

PROBLEM 3 : (Oh Oh Oh (12 points))

As an example of how to think about some of the questions in this section, consider the method stuff
below. The runtime complexity of this method is O(n) and the value returned by the function is O(n

2
) for

parameter n. As a concrete example, note than when n = 100 the loop executes 100 times doing an O(1)

operation each time. The value returned is 1 + 2 + . . . + 99 = (98 ⇥ 99)/2. Note that even if the return

statement was return sum*2 that the value returned would still be O(n
2
).

public int stuff(int n){
int sum = 0;
for(int k=0; k < n; k++){

sum += k;
}
return sum;

}

In all these problems n is a positive number. In each problem you should provide two big-Oh expressions:

one for runtime and one for value returned. Briefly justify each answer you provide. Your answers are

for the entire method, justification can include discussing lines/loops in each method.

Part A (4 points)

What is the runtime complexity and the value returned by method evaluate below in terms of n? Use

big-Oh and justify your answer briefly. Label the run-time and the value returned. Justify each answer.

public int evaluate(int n){

int sum = 0;
for(int k=0; k < n; k++){

for(int j=0; j < k; j++) {
sum += 100;

}
}
for(int k=0; k < n; k++){

sum += 100;
}

return sum;
}

5

Owen Astrachan
Runtime is O(n^2) — the first k loop iterates n times, the inner loop iterates k times, so a total of
1+2+3+…+n-1. This is (n-1)*n/2 which is O(n^2)

The second loop is O(n) and together this is O(n^2)

Owen Astrachan
Value returned is O(n^2) — the value returned is 100+100+100 … done n^2 times, this is essentially

100*n^2 and this is O(n^2)

Test 1 NetID: 201 Fall 2019

Part B (4 points)

What is the runtime complexity and the value returned by method calculate below in terms of n? Use

big-Oh and justify your answer briefly. For this Part B the runtime and the value returned have the same

big-Oh expression. If it helps, you can assume n is a power of 2

public int calculate(int n){

int sum = 0;
for(int k=1; k < n; k *= 2){

for(int j=0; j < n; j += 1){
sum += 1;

}
}
return sum;

}

Part C (4 points)

Consider the method stuff from the beginning of this problem, reproduced below. Recall that the runtime

complexity is O(n) and the value returned is O(n
2
).

public int stuff(int n){
int sum = 0;
for(int k=0; k < n; k++){

sum += k;
}
return sum;

}

Give big-Oh expressions for both the runtime complexity and the value returned for each of the expressions

below. Justify your answers briefly.

int x = stuff(stuff(n-10)); // big-Oh for runtime and value returned

int y = stuff(stuff(n*n)); // big-Oh for runtime and value returned

6

Owen Astrachan
Outer k-loop iterates log n times since k = 2,4,8,… until reaching n. This is log_2(n) or O(log n)

On each iteration the inner loop iterates n times so
this is n+n+n+…+n done log(n) times or O(n log n)

The problem indicates the value returned is the same.

Owen Astrachan
stuff(n-10) is O(n^2) since value of stuff(n) is O(n^2). Thus the question is: what is runtime and value
returned by call stuff(n^2). Since runtime of stuff(X) is O(X), we have runtime is O(n^2) and value is O(n^4)

Owen Astrachan
stuff(n*n) is O(n^4) since value of stuff(n) is O(n^2). Thus the question is: what is runtime and value
returned by call stuff(n^4). Since runtime of stuff(X) is O(X), we have runtime is O(n^4) and value is O(n^8)

Test 1 NetID: 201 Fall 2019

PROBLEM 4 : (Tilt Muse (34 points))

A multiset of strings can contain more than one occurrence of a string. The mutiplicity of a string in a

multiset is the number of times the string occurs. The size of a multiset is the number of di↵erent strings it

contains. Consider this code example and the output that follows.

The output shows that in the Multiset s the String "a" has multiplicity three since it was added three times

to the set and the set’s size is three since there are three unique strings: "a","b","c". Note that each

element of the set is printed with its multiplicity so that "b" occurs once and "c" two times in the set. The

code also shows how the Multset.get method works to return the multiplicity of a string.

a:3,b:1,c:2 3
a 3
b 1
c 2
d 0
e 0

The last exam page contains Java code for a Multiset class with some methods missing that you’ll complete

as part of this question.

Part A (4 points)

Methods toString and equals have an @Override annotation in the code, but methods size and add do

not. Explain both why the error message does not override method in superclass is generated if @Override
is added before size, and not generated when added before equals.

7

Owen Astrachan
The Object class has both .equals and .toString, so every class including Multiset inherits these, and if
changing the default can use @Override

There is .size method and no .add method in Object, so Multiset doesn’t inherit these since Multiset
doesn’t extend any class other than Object. Thus there is no .size to @Override, for example.

Test 1 NetID: 201 Fall 2019

Part B (6 points)

A multiset a contains another multiset b if every element in b occurs in a with the same or greater multiplicity.

In other words, if some element in b occurs more often in b than in a, then a does not contain b. The code

below shows examples of how contains is called – the output from this code follows. When the code runs,

Multiset a already has values as seen when it is printed.

a:2,b:3,c:1
true
a:2,b:3,c:1 contains a:2,b:3,c:1: true
a:3,b:3,c:1 contains a:2,b:3,c:1: true
a:3,b:3,c:1 contains a:4,b:3,c:1: false

Complete the implementation of the method Multiset.contains.

public boolean contains(Multiset a) {

}

8

Owen Astrachan
 for (String key : a.keySet()) {
 if (get(key) < a.get(key)) return false;
 }
 return true;

Owen Astrachan
It’s also possible to do this in one line, though that was not expected:

 return this.equals(union(this,a))

Test 1 NetID: 201 Fall 2019

Part C (4 points)

The Multiset class has two constructors. Code shown earlier/above in this problem illustrates both con-

structors being called. Briefly, explain why the code below will always print true, regardless of how many

times a.add(...) is called. You must refer to the constructor used in creating Multiset b and to the

.equals method in your response.

Multiset a = new Multiset();

// call a.add(..) multiple times

Multiset b = new Multiset(a);
System.out.println(a.equals(b));

Part D (4 points)

The cardinality of a Multiset is the total of all multiplicities of strings in the multiset (the total number

of strings including duplicates since a multiset can contain multiple occurrences of a string). The code

below and its output show two calls of the method cardinality for two di↵erent multisets. Note that the

cardinality is the sum of the multiplicities for each set.

a:1,b:2,d:4 --- 7
a:2,b:3,c:1 --- 6

If a.contains(b) is true, is b.cardinality() <= a.cardinality() always true? Explain.

If a.contains(b) is false, is b.cardinality() <= a.cardinality() always false? Explain.

9

Owen Astrachan
The copy constructor, called to create the Multiset pointed to by b, simply creates a new HashMap that is equal to the HashMap being passed to the constructor (see line 11 of code)

The .equals method simply uses myMap.equals(other.myMap) — and these are the same after
the constructor executes.

Owen Astrachan
Yes, it’s always true. Every element in b must occur at least that many times in a since a.contains(b).

This means a.cardinality() is greater than or equal to b.cardinality()

Owen Astrachan
Not always false if a is “x:3,y:4” and b is “x:8” then a.contains(b) is false, but b.cardinality() > a.cardinality(). But if b is “x:5” a.contains(b) is still false, but b.cardinality() < a.cardinality()

Test 1 NetID: 201 Fall 2019

Part E (6 points)

Implement the method cardinality

public long cardinality() {
long sum = 0;

return sum;
}

Part F (2 points)

The instance variable myMap stores integer values as the multiplicity of each string in a Multiset, but the

return type of cardinality is long. Briefly explain why long is useful as the return type even though

integer values are stored.

10

Owen Astrachan
for (int i : myMap.values()) {
 s += i;
}

Owen Astrachan
for (String key: keySet()) {
 s += get(key);
}

Owen Astrachan
A Multiset could contain many keys all of which have a cardinality of close to Integer.MAX_VALUE.

Adding these together would result in integer overflow, but adding them to a long would NOT result
in overflow.

Test 1 NetID: 201 Fall 2019

Part G (4 points)

Currently, client code must call the method .add("duke") ten times to add ten occurrences of "duke" to a

multiset.

Multiset a = new Multiset();
for(int k=0; k < 10; k++) a.add("duke");

Suppose a new, overloaded method add method is included in the Multiset class so that the call

a.add("duke",10) works to add "duke" ten times. Complete the implementation below

public void add(String key, int occurrences) {

}

Part H (4 points)

If both constructors use new TreeMap instead of new HashMap then two statements are true:

• all Multiset methods will work correctly

• it’s possible that the value returned by toString might change as far as the order of the keys in the

multiset that are part of the string returned.

Brifely explain both of these statements.

11

Owen Astrachan
for(int k=0; k < occurrences; k++) {
 add(key);
}

Owen Astrachan
myMap.putIfAbsent(key,0);
myMap.put(key, myMap.get(key) + occurrences);

Owen Astrachan
Since both TreeMap and HashMap implement the Map interface, the methods they have all work
correctly (though performance may be different).

The code in toString loops over the keys in the map and for TreeSet this results in keys
being visited in alphabetical order. The order in which keys are visited in a HashMap
is unknown/based on the internal collections of buckets/lockers.

10/10/19

13:56:52 1Multiset.java
1: import java.util.*;
2:
3: public class Multiset {
4: private Map<String, Integer> myMap;
5:
6: public Multiset() {
7: myMap = new HashMap<>();
8: }
9:

10: public Multiset(Multiset a) {
11: myMap = new HashMap<>(a.myMap);
12: }
13:
14: @Override
15: public boolean equals(Object o) {
16: if (o == null || !(o instanceof Multiset)) {
17: return false;
18: }
19: Multiset other = (Multiset) o;
20: return myMap.equals(other.myMap);
21: }
22:
23: public static Multiset union(Multiset a, Multiset b) {
24: Multiset ret = new Multiset();
25: Set<String> keys = new HashSet(a.keySet());
26: keys.addAll(b.keySet());
27: for (String key : keys) {
28: int occurrences = Math.max(a.get(key), b.get(key));
29: ret.myMap.put(key, occurrences);
30: }
31: return ret;
32: }
33:
34: public void addAll(Multiset b) {
35: for(String key : b.keySet()) {
36: myMap.put(key,get(key) + b.get(key));
37: }
38: }
39:
40: /**
41: * returns total number of all elements represented by multiset
42: * @return cardinality of this multiset
43: */
44: public long cardinality() {
45: long s = 0;
46: // code not shown
47: return s;
48: }
49:
50: /**
51: * Add a value to the multiset so that it occurs once more
52: * than previous number of occurrences
53: *
54: * @param key is string added to multiset
55: */
56: public void add(String key) {
57: myMap.putIfAbsent(key, 0);
58: myMap.put(key, myMap.get(key) + 1);
59: }
60:
61: public void add(String key, int occurrences) {
62: // code not shown
63: }

64:
65: @Override
66: public String toString() {
67: String ret = "";
68: for (String key : myMap.keySet()) {
69: ret += String.format("%s:%d,", key, myMap.get(key));
70: }
71: return ret.substring(0, ret.length() - 1); // remove last comma
72: }
73:
74: /**
75: * Returns number of distinct strings in this multiset.
76: * @return the size of this multiset
77: */
78: public int size() {
79: return myMap.size();
80: }
81:
82: /**
83: * Returns number of occurrences of key in this multiset.
84: * @param key is string
85: * @return number of occurrences of key in this multiset
86: */
87: public int get(String key) {
88: if (!myMap.containsKey(key)) {
89: return 0;
90: }
91: return myMap.get(key);
92: }
93:
94: /**
95: * Returns a set of distinct strings in this multiset
96: * @return set of strings in this multiset
97: */
98: public Set<String> keySet() {
99: return myMap.keySet();

100: }
101:
102: /**
103: * Returns true if a contained in this multiset and false otherwise
104: * @param a is a multiset
105: * @return true if and only if a contained in this multiset
106: */
107: public boolean contains(Multiset a) {
108: // code not shown
109: return true;
110: }
111:
112: }

