
Test 2 : Compsci 201

Owen Astrachan

November 15, 2019

Name:

NetID/Login:

Community standard acknowledgment (signature)

value grade

NetID 1 pt.

Problem 1 17 pts.

Problem 2 18 pts.

Problem 3 28 pts.

Problem 4 10 pts.

Total: 74 pts.

This test has 12 pages, be sure your test has them all. Write your NetID clearly on each page of this test
(worth 1 point).

In writing code you do not need to worry about specifying the proper import statements. Don’t worry
about getting function or method names exactly right. Assume that all libraries and packages we’ve discussed
are imported in any code you write. You can write any helper methods you would like in solving the problems.
You should show your work on any analysis questions.

You may consult your six (6) note sheets and no other resources. You may not use any computers, calculators,
cell phones, or other human beings. Any note sheets must be turned in with your test.
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Common Recurrences and their solutions.

label recurrence solution
A T(n) = T(n/2) + O(1) O(log n)
B T(n) = T(n/2) + O(n) O(n)
C T(n) = 2T(n/2) + O(1) O(n)
D T(n) = 2T(n/2) + O(n) O(n log n)
E T(n) = T(n-1) + O(1) O(n)
F T(n) = T(n-1) + O(n) O(n2)
G T(n) = 2T(n-1) + O(1) O(2n)

TreeNode and ListNode classes as used on this test. In some problems the type of the info field may change
from int to String and vice versa

public class TreeNode { public class ListNode {

String info; int info;

TreeNode left; ListNode next;

TreeNode right; ListNode(int val) {

info = val;

TreeNode(String x){ }

info = x; ListNode(int val,

} ListNode link){

TreeNode(String x,TreeNode lNode, info = val;

TreeNode rNode){ next = link;

info = x; }

left = lNode; }

right = rNode;

}

}
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PROBLEM 1 : (hint,lint,mint,pint (17 points))

Part A (6 points)

Write method fromArray that returns a pointer to the first node of a linked list with the same values and
in the same order as the parameter array.

For example, the call fromArray(new int[]{1,2,3,4}) should return a pointer to the first node of this list:

If array has no values, the method should return null.

public ListNode fromArray(int[] array) {

}

Part B (3 points)

Describe in words or code how to change the code you wrote in Part A so that it returns a list of only
those values in the array parameter that have an odd index, e.g. 1,3,5, ... – for example for the call
fromArray(new int[]{1,2,3,4}) the list returned has two values: 2 and 4, since these have indexes 1 and
3, respectively.
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Parts C and D refer to the recursive method triple that returns a linked-list with three times as many
nodes as in list by adding two nodes with the same value after each node in the original list. For example
the call triple(list) for the list on top in the diagram below returns the list diagrammed.

Part C (3 points)

Write a recurrence relation and the big-Oh solution to the recurrence relation for the run-time of triple on
an n-node list

Part D (5 points)

Write the method multiply such that multiply(list,3) returns the same list as triple(list) and,
more generally, multiply(list,n) returns a list with n occurrences of each node/value in the original list
parameter. If list is [1,2], then multiply(list,5) returns [1,1,1,1,1,2,2,2,2,2]

The code you write must be recursive. You will receive no credit unless you write a recursive
method.

public ListNode multiply(ListNode list, int size) {

}

4



Test 2 NetID: 201 Fall 2019

PROBLEM 2 : (sequence of sequences (18 points))

Consider an array of linked-lists, for example ListNode[] array where each element of array is a pointer
to a linked list as diagrammed below, so that array[0] points to the first node of the list [15,12,8]; array[2]
points to the first node of the list [8,2]; and other array values point at other lists not shown.

Part A (4 points)

Complete method sumArray that returns the total of all values stored in all nodes in all the the linked lists
in array.

In writing sumArray you must call the method sumList shown below and use the value it returns — for
example the code you write should not refer to any .next fields.

public int sumArray(ListNode[] array) {

}

public int sumList(ListNode list) {

if (list == null) return 0;

return list.info + sumList(list.next);

}

Part B (2 points)

The names of both sumArray and sumList can be changed to sum and a class containing these methods
would still compile and run. Circle the correct statement.

True, both methods can have the same names since the parameters are different.

False, the methods cannot each be named sum in the same class.
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Part C (6 points)

Write method find that returns a pointer to the node of a linked list containing target, or null if no node
in the linked list contains target. For example, the call find(array[0],8) returns a pointer to the node
containing 8 given the array above and the call find(array[2],5) returns null.

public ListNode find(ListNode list, int target) {

}

Part D (6 points)

Write method find that returns the index of the linked list in array that contains target, or -1 if there is
no linked list in array that contains target. You must call the method find in Part C, assume it works
correctly. If more than one linked list in array contains target, return the index that is smallest of those
indexes that point to linked lists containing target.

For example, find(array,2) returns 2, find(array,12) returns 0, and find(array,8) returns 0, since 0
is less than 2.

public int find(ListNode[] array, int target) {

}
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PROBLEM 3 : (Figleaf, Bigleaf (28 points))

Part A (3 points)

The tree shown below is a search tree. The string "rhubarb" must have been added to the tree after the
string "tangerine" since it is a child of "tangerine".

Of the 10 strings in the tree, which could have been inserted as the last of the 10? There is more than one
string that could have been inserted last, list each that could be inserted last.

Part B (8 points)

The height of this tree is five: the longest root-to-leaf path is from peach to fig which contains five nodes.

Which of the following nine fruits can be added to the tree so that it is still a search tree, and so that the
height after the addition is still five. Consider fruits in isolation: only one value is added, then the height is
checked and the value removed. For example, avocado can be added and the height of the tree will still be
five.

Circle the fruits whose singular addition will not increase the height.

banana date durian kiwi lemon

mango pear pomegranate watermelon
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Part C (5 points)

Assume TreeNodes store String values.

The method revAlpha below should return an ArrayList whose elements are in reverse alphabetical order
(largest to smallest) when its parameter is a search tree. Complete alphaHelp so that revAlpha works as
specified. You should write at most 15 lines of code. Hint: an in-order traversal visits the nodes of a search
tree in alphabetical order. Your solution must run in O(n) time for an n-node tree.

You may not add to or alter the code in revAlpha.

public ArrayList<String> revAlpha(TreeNode tree) {

ArrayList<String> list = new ArrayList<>();

alphaHelp(tree,list);

return list;

}

private void alphaHelp(TreeNode tree, List<String> list) {

}
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Part D (6 points)

The method sum below returns the sum of all the nodes in a binary tree. For the tree diagrammed, the call
sum(root) returns 62.

public int sum(TreeNode root) {

if (root == null) return 0;

return root.info + sum(root.left) + sum(root.right);

}

Let T (n) be the time for sum to run on an n-node tree. Write the recurrence relation and the big-Oh solution
to the recurrence relation for both the average case, when trees are roughly balanced and the worst case,
when all nodes are in a left subtree (or, equivalently, a right subtree), e.g., nodes have only left children.

Be sure to write the recurrence and the big-Oh solution to that recurrence.

average: T (n) =

solution:

worst: T (n) =

solution
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Part E (6 points)

The root is at level zero, its children at level one, and in general the children of a node at level N are at
level N+1. Complete the helper method levelHelp below so that the call evenLevelSum(root) returns the
sum of all nodes at even levels in the tree parameter. For the tree below, the call should return 44 since the
nodes at even levels are 7 (level zero), 5, 10, and 22 (level two).

The call levelHelp(root,true) below indicates that the global root, at level zero, is at an even level since
the second argument in the call is true.

Do not change or add code to evenLevelSum.

public int evenLevelSum(TreeNode root) {

return levelHelp(root,true);

}

/**

* return sum of all nodes at even levels in tree

* where root is at even level if isEvenLevel == true

* and root is NOT at an even level if isEvenLevel == false

*/

public int levelHelp(TreeNode root, boolean isEvenLevel) {

}
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PROBLEM 4 : (Missing Link (10 points))

The code below refers to classes and methods in the DNA/Link assignment. In the example shown the code
prints 27 for both numbers since three occurrences of "acg" are each replaced by a string of nine characters.

Part A (3 points)

If new LinkStrand is replaced by new StringStrand or by new StringBuilderStrand the code above still
runs and the output is the same (with no other changes to the code). In a sentence or two explain why the
code still runs with the same output.

Part B (3 points)

If the String splicee is replaced by a longer (more characters) string, e.g., a string of one-million a’s, the
output will change since the new strand created by cutAndSplice will be longer. However, the runtime does
not change when the length of splicee changes from 9 to one million. Briefly, explain why the runtime does
not change and does not depend on the length of splicee.

(continued)
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Part C (4 points)

The code above will run if splicee has one billion a’s, but will crash in the call to
ldna.toString().length() with an out-of-memory error. The value of ldna.size() is correctly printed
as three-billion, then the program crashes.

Why does the call ldna.toString() crash with an out of memory error but the call ldna.size() does not?
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