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Owen Astrachan

November 2, 2018

Name:

NetID/Login:

Community standard acknowledgment (signature)

value grade

NetID 1 pt.

Problem 1 22 pts.

Problem 2 12 pts.

Problem 3 12 pts.

Problem 4 12 pts.

Problem 5 16 pts.

TOTAL: 75 pts.

This test has 12 pages, be sure your test has them all. Write your NetID clearly on each page of this test
(worth 1 point).

In writing code you do not need to worry about specifying the proper import statements. Don’t worry
about getting function or method names exactly right. Assume that all libraries and packages we’ve discussed
are imported in any code you write. You can write any helper methods you would like in solving the problems.
You should show your work on any analysis questions.

You may consult your six (6) note sheets and no other resources. You may not use any computers, calculators,
cell phones, or other human beings. Any note sheets must be turned in with your test.
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Common Recurrences and their solutions.

label recurrence solution
A T(n) = T(n/2) + O(1) O(log n)
B T(n) = T(n/2) + O(n) O(n)
C T(n) = 2T(n/2) + O(1) O(n)
D T(n) = 2T(n/2) + O(n) O(n log n)
E T(n) = T(n-1) + O(1) O(n)
F T(n) = T(n-1) + O(n) O(n2)
G T(n) = 2T(n-1) + O(1) O(2n)

TreeNode and ListNode classes as used on this test.

public class TreeNode { public class ListNode {

String info; String info;

TreeNode left; ListNode next;

TreeNode right; ListNode (String val) {

info = val;

TreeNode(String x){ }

info = x; ListNode(String val,

} ListNode link){

TreeNode(String x,TreeNode lNode, info = val;

TreeNode rNode){ next = link;

info = x; }

left = lNode; }

right = rNode;

}

}
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PROBLEM 1 : (Oh-Oh (22 points))

Part A (7 points)

Consider the method bleem below. The value of bleem(10) is 88, the value of bleem(20) is 360, and the
value of bleem(100) is 9133.

A.1

Using big-Oh, what is the runtime complexity of the call bleem(N)? Justify your answer with words and
labeling the code as appropriate.

A.2

Using big-Oh, what is the value returned by the call bleem(N)? Your answer should be consistent with the
values given above; your answer should use O-notation, no justification needed.

A.3

Using big-Oh, what is the runtime complexity of the call bleem(bleem(N))? Your answer should be consistent
with your answers to A.1 and A.2 above. No explanation needed.

public int bleem(int n) {

int sum = 0;

for(int k=0; k < n; k++) {

for(int j=0; j < k; j += 1) {

sum += 1;

}

for(int j=0; j < k; j += 2) {

sum += 1;

}

for(int j=0; j < k; j += 3) {

sum += 1;

}

}

return sum;

}
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Part B (6 points)

Consider the method calc below. The value of calc(32) is 160, the value of calc(64) is 384, and the value
of calc(1024) is 10240.

B.1

Using big-Oh, what is the runtime complexity of the call calc(N)? Briefly justify your answer.

B.2

Using big-Oh, what is the value returned by the call calc(N)? Your answer should be consistent with the
values given above; your answer should use O-notation, no justification needed.

public int calc(int n) {

int sum = 0;

int limit = n;

while (limit > 1) {

sum += n;

limit = limit/2;

}

return sum;

}
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Part C (9 points)

Consider the function func below. The value of func(10) is 20, the value of func(40) is 80, and the value
of func(90) is 180.

C.1

What is the exact value of func(1024)? You must supply an integer answer.

C.2

Using big-Oh, what is the runtime complexity of the call func(n)? Briefly explain your answer. For full
credit you should use a recurrence relation. Label the function if that’s helpful for your explanation.

C.3

Using big-Oh, what is the value returned by the call func(func(2*n))? Your answer should be consistent
with your answers to the previous questions. Briefly justify your answer.

public int func(int n) {

if (n <= 0) return 0;

return 2 + func(n-1);

}
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PROBLEM 2 : (Frayed Knot (12 points))

The ListNode class has an info field of type String. The call str2list("asp") for the method str2list

below returns the linked list shown.

‘a’ ‘s’ ‘p’

0 public ListNode str2list(String s) {

1 if (s.length() == 0) return null;

2 return new ListNode(s.substring(0,1),

3 str2list(s.substring(1)));

}

Part A (2 points)

The recursive call (line 3) and its execution assigns a value to three next fields as shown in the diagram of
the linked list. What code/where is the explicit assignment to the .next field of a node?

Part B (2 points)

The base case returns the value null. In a sentence or two explain how the recursive call (line 3) is closer
to the base case each time a recursive call is made.
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Part C (8 points)

Write an iterative version (no recursion) of this method by completing the code below. You must use a loop
and you must maintain the invariant that last points the last node of the linked list being created in the
loop.

public ListNode str2list2(String s) {

if (s.length() == 0) return null;

ListNode first = new ListNode(s.substring(0,1),null); // first letter in first node

ListNode last = first;

return first;

}
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PROBLEM 3 : (Markov, Polov (12 points))

In the Markov Part 2 assignment the same method getRandomText below was used in both class BaseMarkov
and in class EfficientMarkov. Questions about the method follow the code. Line numbers are shown, but
are not part of the code.

0 @Override

1 public String getRandomText(int length) {

2

3 StringBuilder sb = new StringBuilder();

4 int index = myRandom.nextInt(myText.length() - myOrder + 1);

5

6 String current = myText.substring(index, index + myOrder);

7 sb.append(current);

8

9 for(int k=0; k < length-myOrder; k += 1){

10 ArrayList<String> follows = getFollows(current);

11 if (follows.size() == 0){

12 break;

13 }

14 index = myRandom.nextInt(follows.size());

15 String nextItem = follows.get(index);

16 if (nextItem.equals(PSEUDO_EOS)) {

17 break;

18 }

19 sb.append(nextItem);

20 current = current.substring(1)+ nextItem;

21 }

22 return sb.toString();

23 }

Part A (6 points)

One line in the code above executes more quickly for EfficientMarkov than for BaseMarkov. What line
(you can indicate the number) executes more quickly? Briefly explain why that one line is O(1) for
EfficientMarkov and O(T ) for BaseMarkov when the training text has T characters.
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Part B (2 points)

Briefly explain when PSEUDO_EOS can be encountered and why that sometimes results in fewer than 1000

random characters being generated by the call getRandomText(1000) if the training text has only 100
characters.

Part C (4 points)

The call getRandomText(N) on the previous page runs in O(N) time to generate N random characters
when EfficientMarkov is used. If StringBuilder is replaced by String, and sb.append is replaced by
sb.concat, the output will be the same, but the runtime will be O(N2). Briefly explain both the O(N) and
the O(N2).
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PROBLEM 4 : (RYOGVIB (12 points))

The tree shown below is a binary search tree. The in-order traversal of the tree will be a list of all the values
in the tree in alphabetical order.

green

coral

fuschiabrown

maroon

yellow

pink

orange silver

Part A (6 points)

The code for a pre-order and post-order traversal are shown below.

public void preOrder(TreeNode root) { public void postOrder(TreeNode root) {

if (root != null) { if (root != null) {

System.out.println(root.info) postOrder(root.left);

preOrder(root.left); postOrder(root.right);

preOrder(root.right); System.out.println(root.info);

} }

} }

What is the pre-order traversal of the tree (values printed)?

What is the post-order traversal of the tree (values printed)?

If the recursive calls in method preOrder are swapped, so that the right subtree call is made first, what
values are printed?

Part B (6 points)

Insert the words "red", "white", and "blue" in that order, in the tree above so that it remains a search
tree. Label the values by drawing on the tree.
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PROBLEM 5 : (I think That I (16 points))

In class we went over the two methods below. Method height returns the height of a binary tree, the longest
root-to-leaf path. Method leafSum returns the sum of the values in all leaves of a tree (assuming integer
values are stored in each node). Line numbers shown are not part of the methods.

int height(Tree root) {

1 if (root == null) return 0;

2

3 return 1 + Math.max(height(root.left),

4 height(root.right));

}

public int leafSum(TreeNode t) {

1 if (t == null) return 0;

2

3 if (t.left == null && t.right == null) return t.info;

4

5 return leafSum(t.left) + leafSum(t.right);

}

Part A (4 points)

Assume trees are roughly balanced. The methods above have the same recurrence relation. What is this
recurrence relation? Briefly explain why the same recurrence holds for each method by labeling each line
in the methods above with an expression involving T (..) or O(..).

Part B (4 points)

If the line labeled 3 is removed from leafSum the method returns the same value for every non-empty tree,
i.e., leafSum(tree) returns the same value for every tree. What value is returned? Briefly justify your
answer.
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Part C (8 points)

In answering this question assume all values in a tree are positive.

Write a method maxPath that returns the maximal value of all root-to-leaf paths in a binary tree. In the tree
shown here the root-to-leaf paths sum to 16, 15, 16, 18, and 15 since the paths are 2-6-8, 2-6-4-3, 2-6-4-3-1,
2-2-1-4-9, and 2-2-1-4-6. The method should return 18.

2

6 2

8 4

3 3

1

1

4

9 6

In writing you method you may not use any instance variables.

In writing your method you must consider the base case of an empty tree in which the maximal value must
be zero since there are no paths.

Using recursion, the maximal value for the root of a tree can be determined by the maximal values of its
subtrees.

public int maxPath(TreeNode root) {

}
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