
Test 2 Redux: Compsci 201

Owen Astrachan

April 19, 2019

Name:

NetID/Login:

Community standard acknowledgment (signature)

value grade

Problem 1 4 pts.

Problem 2 8 pts.

Problem 3 6 pts.

TOTAL: 18 pts.

This test has 6 pages, be sure your test has them all. Write your NetID clearly on each page of this test
(worth 1 point).

In writing code you do not need to worry about specifying the proper import statements. Don’t worry
about getting method names exactly right. Assume that all libraries and packages we’ve discussed are
imported in any code you write. You can write any helper methods you would like in solving the problems.
You should show your work on any analysis questions where it is asked for.

You may consult your note sheet and no other resources. You may not use any computers, calculators, cell
phones, or other human beings. Any note sheets must be turned in with your test.

1

Test 2 Redux NetID: 201 Spring 2019

Common Recurrences and their solutions.

label recurrence solution
A T(n) = T(n/2) + O(1) O(log n)
B T(n) = T(n/2) + O(n) O(n)
C T(n) = 2T(n/2) + O(1) O(n)
D T(n) = 2T(n/2) + O(n) O(n log n)
E T(n) = T(n-1) + O(1) O(n)
F T(n) = T(n-1) + O(n) O(n2)
G T(n) = 2T(n-1) + O(1) O(2n)

TreeNode and ListNode classes as used on this test. In some problems the type of the info field may change
from int to String and vice versa

public class TreeNode { public class ListNode {

int info; int info;

TreeNode left; ListNode next;

TreeNode right; ListNode(int val) {

info = val;

TreeNode(int x){ }

info = x; ListNode(int val,

} ListNode link){

TreeNode(int x,TreeNode lNode, info = val;

TreeNode rNode){ next = link;

info = x; }

left = lNode; }

right = rNode;

}

}

2

Test 2 Redux NetID: 201 Spring 2019

PROBLEM 1 : (ListUp (4 points))

Write method ascend that returns a pointer a linked-list containing the values 1,2, ..., size, where size is
the parameter to ascend.

The diagram below shows the result of the call ascend(4) — assume that size will always be greater than
or equal to 1.

You can write ascend iteratively or recursively.

public ListNode ascend(int size) {

}

3

Test 2 Redux NetID: 201 Spring 2019

PROBLEM 2 : (Filters (8 points))

The method filter effectively removes all nodes whose info field is less than the value of parameter val.
An alternate view is that filter returns a list in which nodes containing info fields that are greater than
or equal to val are retained.

list call returned list
[13,7,12,10] filter(list,11) [13,12]

[13,7,12,10] filter(list,15) []

[13,7,12,10] filter(list,6) [13,7,12,10]

Part A (2 points)

The recursive method shown below is correct. Write a recurrence relation for this method where T (n) is the
time for filter to execute on an n-node list. Write the solution to the recurrence relation.

Part B (6 points)

Write an iterative solution. The values in the list returned should be in the same relative order that they
are in parameter list. You can create only one new node, otherwise use the nodes that exist in parameter
list.

You can write the code in any way as long as you write it iteratively and create at most one
new node.

You may find the following ideas useful in writing a solution.

• Create a dummy header node (see below) that acts like the first node of the list that will be returned,
the actual list returned is dummy.next.

• Keep last pointing to the last node of the list that will be returned. When traversing the parameter
list, add retained nodes/values to the end of this list, using and updating last.

If you write the code to use this idea, you’ll use these statements before your loop:

ListNode dummy = new ListNode(Integer.MAX_VALUE,null);

ListNode last = dummy;

You’ll then have a while loop. After the while loop you’ll include this code:

last.next = null;

return dummy.next;

(continued on next page)

4

Test 2 Redux NetID: 201 Spring 2019

public ListNode filter(ListNode list,int val) {

}

5

Test 2 Redux NetID: 201 Spring 2019

PROBLEM 3 : (Zzzzzzzzzz (6 points))

Write method zigzag that returns a binary tree in which each internal node has only one non-null child. If
the value in a node is odd, the only child is a right-child. If the value in a node is even, the only child is a
left-child.

The diagram below shows the result of two calls. The parameter numNodes is the number of nodes in the
returned tree. The parameter value is the value in the root of the tree returned.

Except for the root, which has no parent, every node’s value should be one more than its parent. Assume
that numNodes will always be greater than or equal to one.

/**

* @param value is stored in the root of the tree returned

* @param numNodes is the number of nodes in the treet returned

*/

public TreeNode zigzag(int value, int numNodes) {

TreeNode root = new TreeNode(value);

if (numNodes == 1) return root;

}

6

