
Test 2 : Compsci 201
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April 5, 2019

Name:

NetID/Login:

Community standard acknowledgment (signature)

value grade

NetID 1 pt.

Problem 1 24 pts.

Problem 2 7 pts.

Problem 3 17 pts.

Problem 4 23 pts.

Problem 5 12 pts.

TOTAL: 84 pts.

This test has 16 pages, be sure your test has them all. Write your NetID clearly on each page of this test
(worth 1 point).

In writing code you do not need to worry about specifying the proper import statements. Don’t worry
about getting method names exactly right. Assume that all libraries and packages we’ve discussed are
imported in any code you write. You can write any helper methods you would like in solving the problems.
You should show your work on any analysis questions where it is asked for.

You may consult your six (6) note sheets and no other resources. You may not use any computers, calculators,
cell phones, or other human beings. Any note sheets must be turned in with your test.
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Common Recurrences and their solutions.

label recurrence solution
A T(n) = T(n/2) + O(1) O(log n)
B T(n) = T(n/2) + O(n) O(n)
C T(n) = 2T(n/2) + O(1) O(n)
D T(n) = 2T(n/2) + O(n) O(n log n)
E T(n) = T(n-1) + O(1) O(n)
F T(n) = T(n-1) + O(n) O(n2)
G T(n) = 2T(n-1) + O(1) O(2n)

TreeNode and ListNode classes as used on this test. In some problems the type of the info field may change
from int to String and vice versa

public class TreeNode { public class ListNode {

String info; int info;

TreeNode left; ListNode next;

TreeNode right; ListNode(int val) {

info = val;

TreeNode(String x){ }

info = x; ListNode(int val,

} ListNode link){

TreeNode(String x,TreeNode lNode, info = val;

TreeNode rNode){ next = link;

info = x; }

left = lNode; }

right = rNode;

}

}
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PROBLEM 1 : (Wink Your Queen (24 points))

Consider the problem of removing duplicate elements from an array of strings creating a unique array. For
example, given this array

["a", "b", "a", "b", "a", "b", "c", "d", "a"]

A method creating a unique array could return:

["a", "b", "d", "c"]

The order of the values in the unique array doesn’t matter, but it should contain one of each unique value
in the original array and no values not in the original array.

You’re asked to reason about three methods that return a unique array. All work correctly. In answering
questions using Big-Oh you can assume that all strings in the array parameter a are unique (this is likely
the worst case).

Part A (8 points)

Method rd2 returns a unique array using classes whose APIs are specified in the java.util package.

A.1 (2 points)

Do lines 24 and 25 together do the same thing as the code below? Answer same or different in the space to
the right of the code.

HashSet<String> set = new HashSet<>();

for(String s : a) set.add(s);

A.2 (3 points)

What is the runtime complexity (using Big-Oh) of this code when parameter a has N elements? Explain
your answer in general terms, be sure to account for all lines of code.

A.3 (3 points)

If HashSet is replaced by TreeSet in the code above the method is still correct. What is the runtime
complexity (using Big-Oh) when TreeSet is used? Explain your answer.
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Part B (7 points)

Method rd3 returns a unique array using an ArrayList.

B.1 3 points

What is the runtime complexity (using Big-Oh) of this code when parameter a has N elements. Explain
your answer in general terms, be sure to account for all lines of code.

B.2 2 points

Explain the purpose of line 37 in creating the unique array to return.

B.3 2 points

Are the elements in the array returned on line 37 in the same order relative to each other as they are in
array parameter a? Explain your answer.
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Part C (9 points)

Method rd1 below returns a unique array by first sorting the array, then removing duplicate elelements
(which are adjacent since the array is sorted).

C.1 (3 points)

What is the runtime complexity (using Big-Oh) of this code when parameter a has N elements. Explain
your answer in general terms, be sure to account for all lines of code.

C.2 (3 points)

Explain in general terms the code in lines 14-19 (not by explaining every line) in creating the unique array
to return.
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C.3 (3 points)

The loop in lines 8-12 has one of the three statements below as an invariant. Choose which is an invariant:
true each time the loop test k < a.length is evaluated. As is typical [ and ] indicate a closed/inclusive
end-point and ( and ) indicate an open/non-inclusive end-point.

1. Elements in [0..lastUnique] are unique, there are no duplicates in this range.

2. Elements in [0..lastUnique) are unique, there are no duplicates in this range.

3. Elements in (0..lastUnique] are unique, there are no duplicates in this range.

You must provide three things for full credit:

• Which invariant above is true.

• Justify/explain briefly why the invariant is true the first time the loop test is evaluated.

• Justify/explain briefly why the invariant is true after lines 10 and 11 execute.
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PROBLEM 2 : (Summary Motion (7 points))

The method sum below correctly returns the sum of all the nodes in its linked-list parameter.

Part A (3 points)

What is the recurrence relation for this method when list has n nodes? Use T (n) as the time for sum to
execute on an n-node list. What is the solution to this recurrence? You don’t have to explain/justify, just
write the recurrence and its solution.

T (n) =

Part B (4 points)

Write an iterative solution, one in which no recursion is used. For every list the values of sum(list) and
summer(list) should be the same.

public int summer(ListNode list) {

}
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PROBLEM 3 : (Catsup (17 points))

The tree below is a binary search tree.

Part A (8 points)

Label/add the four strings caracal, leopard, puma, panther, and snow leopard, in that order, to the tree shown
above. Be sure it’s clear that each string added is a left- or right-child.
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Part B (9 points)

In answering these questions use the tree before values are added as in Part A. This is reproduced here.

Consider method toString below.

The value returned by toString(root), where root points at the node with lynx above, is shown below.

bobcat cheetah jaguar lion lynx margay ocelot serval tiger

B.1 (3 points)

If line 24 in the method toString is changed to

String ret = root.info + " " + left + " " + right;

what is returned by the call toString(root)? The amount of whitespace between strings doesn’t matter,
just the order of the words.
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B.2 (3 points)

In answering these questions use the tree before values are added as in Part A. This is reproduced here.

Consider method toString below.

If line 24 in the method toString is changed to

String ret = right + " " + root.info + " " + left;

what is returned by the call toString(root)? The amount of whitespace between strings doesn’t matter,
just the order of the words.
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B.3 (3 points)

In answering these questions use the tree before values are added as in Part A. This is reproduced here.

Consider method toString below.

Indicate how to change line 24 so that the following is printed.

tiger ocelot serval margay lion cheetah bobcat jaguar lynx

You should write the code, you can only use the values of left, right, and root.info in the code you write.
You should have some whitespace between each word, the amount of whitespace doesn’t matter.

Write line 24 below:

String ret =
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PROBLEM 4 : (Needle in a Haystack? (23 points))

The method searchTree below correctly returns true if its parameter root is a binary search tree, and
false if it is not a binary search tree.

Consider each tree rooted at F below.

• The tree on the left is not a search tree because although the left-subtree of the root is a search tree,
and the right-subtree of the root is a search tree, one of the nodes, M, in the left-subtree is greater
than the root.

• The tree in the middle is a search tree because for each node, the subtree rooted at that node is a
search tree and each node is greater than all values in its right subtree and less than or equal to all
values in its left subtree.

• The tree on the right is not a search tree because the subtree rooted at T is not a search tree since V
is not less than or equal to T.

Part A (7 points)

Methods min and max shown above each have a recurrence of M(n) = 2M(n/2) + O(1).

Let T (n) be the time for searchTree to run when the tree parameter has n nodes. Label each line of the
method searchTree with an expression using T , or with a big-Oh expression. Assume trees are roughly
balanced. Using these labels complete the recurrence:

T (n) =

What is the solution to this recurrence?
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Part B (8 points)

In this problem TreeNode.info has type int, so stores an integer value.

A full tree has 2n−1 nodes at level n where the root is at level one, its children at level two, and in general
the children of a node at level k are at level k + 1. The nodes at level n are numbered starting with 2n−1

and incrementing by one, from left-to-right, until the last node on level n which is 2n − 1

In the trees below, the tree on the left is a full-tree with two levels and the tree on the right is a full tree
with four levels. We call these 2-level and 4-level full trees, respectively.

B.1

What is the total number of nodes in a 4-level tree, i.e., the tree on the right above?

B.2

What is the total number of nodes in an n-level full tree?

B.3

What is the number of non-leaf nodes in a 3-level full tree?

B.3

What is the number of non-leaf nodes in a n-level full tree?
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Part C (8 points)

The method createFull below creates and returns a full tree with the specified number of levels so that the
call createFull(2) returns the tree on the left and the call createFull(4) returns the tree on the right.

The method uses a private helper method that you should complete using at most 10 lines of code.

public TreeNode createFull(int levels) {

return fullHelper(1,levels);

}

/**

* Return a full-tree with the specified number of levels

* in which the root contains nodeValue

* @param nodeValue is the value of the root of the tree returned

* @param levels is the number of levels in the full tree returned

* @return a full tree

*/

private TreeNode fullHelper(int nodeValue, int levels) {

if (levels == 1) {

return new TreeNode(nodeValue);

}

}
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PROBLEM 5 : (The Great Divide (12 points))

Write method divide which alters a linked list and returns the altered list so that all nodes with an odd
index appear in the same order as in the original list followed by all nodes with an even index in the same
order. Odd and even nodes are determined by the index of the node in the original list with the first node
as node number 1, the next node as node number 2 and so on.

For example, the original list is shown at the top of the diagram and the returned list at the bottom.

Your code should not create any new nodes, but instead alter next fields. Your code should run in O(n)
time where n is the number of nodes in the original list.

You can write the code in any way.

You may find the following ideas useful in writing a solution.

• Check if list is null or has one node, in which case it can be returned without changing any pointers.
This ensures that the code you write deals with lists of two or more nodes and thus contains both an
odd node and an even node.

• Create a variable boolean odd = true before the loop you write. In the loop you write use the
statement odd = !odd to change the value from true to false and vice versa.

One idea that will work and that you’re strongly encouraged to use is to maintain pointers to the
first and last nodes of two lists: an odd-list and an even-list as shown in the diagram. As the original list is
traversed, nodes are alternately added to the end of the odd-list or even-list.

If you write the code to maintain four such pointers, the last statements you might write are:

oddLast.next = evenFirst;

evenLast.next = null;

return oddFirst;

You’ll need to initialize these four variables before the loop and access some of them in the body of the loop
that you write.

Complete the code on the next page.
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public ListNode divide(ListNode list) {

}

16


