
Test 1 Fall 2018 : Compsci 201

Owen Astrachan

September 26, 2018

Name:

NetID/Login: (1 point)

Community standard
acknowledgment (signature) (1 point)

value grade

Problem 1 28 pts.

Problem 2 9 pts.

Problem 3 16 pts.

Problem 4 20 pts.

TOTAL: 75 pts.

This test has 16 pages, be sure your test has them all. Please write your NetID clearly on each page of this
test. You will get one point for including your netid on the first page. There is one blank page at the end
of the test.

In writing code you do not need to worry about specifying the proper import statements. Don’t worry
about getting function or method names exactly right. Assume that all libraries and packages we’ve discussed
are imported in any code you write. You can write any helper methods you would like in solving the problems.

You may consult your six (6) note sheets and no other resources. You may not use any computers, calculators,
cell phones, or other human beings. Any note sheets must be turned in with your test.

1

Test 1 NetID: 201 Fall 2018

PROBLEM 1 : (I-O, I-O, it’s off to the pasture we go (12 points))

Part A: 10 points

What is printed by each System.out.printf statement? Indicate the output next to each statement. There
are five statements.

String s1 = new String("crazy");

String s2 = s1;

String s3 = s2 + s2;

String[] a = {"red", "orange", "yellow", "green"}

String[] b = a;

s1 = s1 + " love";

b[3] = "violet";

System.out.printf("%s \t %d\n",s1, s1.length());

System.out.printf("%s \t %d\n",s2, s2.length());

System.out.printf("%s \t %d\n",s3, s3.length());

System.out.printf("%s %s\n",a[3], b[3]);

System.out.printf("%s\n", a[0] + b[0]);

Part B: 6 points

True or False, Explain/Justify each answer for full credit.

• Assume that for two string variables s and t the value of s == t is true. In this case the value of
s.equals(t) must also be true.

• Assume that for two string variables s and t the value of s == t is true. In this case
s.hashCode() == t.hashCode() must also be true.

• Assume that for two string variables s and t the value of s == t is false. In this case
s.hashCode() == t.hashCode() must also be false

2

Test 1 NetID: 201 Fall 2018

Parts C and D: 12 points

Questions in this section are based on the class Point shown below. You were shown this class for an
assignment quiz.

public class Point {

private double myX;

private double myY;

public Point(double x, double y) {

myX = x;

myY = y;

}

@Override

public String toString() {

return String.format("(%2.3f,%2.3f)", myX, myY);

}

/**

* return Euclidean distance from this point to another point

* @param other Point to which distance calculated

* @return distance from this point to other

*/

public double distanceFrom(Point other) {

double dx = myX - other.myX;

double dy = myY - other.myY;

return Math.sqrt(dx*dx + dy*dy);

}

@Override

public boolean equals(Object o) {

Point other = (Point) o;

if (other.myX == myX && other.myY == myY) {

return true;

}

return false;

}

@Override

public int hashCode() {

return (int) (100*myX + myY);

}

}

3

Test 1 NetID: 201 Fall 2018

Part C: 6 points

The output of each println statement below is either true or false. Indicate the value and provide a brief
reason for your answer.

Point a = new Point(13,77);

Point b = new Point(92,158);

System.out.println(a.distanceFrom(b) == b.distanceFrom(a));

System.out.println(a.hashCode() == b.hashCode());

System.out.println(a.equals(b));

Part D: 6 points

The code below reads a file containing an even number of double values and should print the point furthest
from the origin. For the data file shown below

5 12 3 4 -3 -4 4 -3

6 8 -6 8 -6 -8 6 -8

The output should be

furthest point is (5.000,12.000);

distance = 13.000

Complete the code so it works as intended. You should add code within the while loop in two places as
indicated in the code.

4

Test 1 NetID: 201 Fall 2018

import java.io.*;

import java.util.*;

public class PointDriver {

public static void main(String[] args) throws FileNotFoundException {

Scanner scan = new Scanner(new File("points.txt"));

Point origin = new Point(0,0);

Point max = origin;

while (scan.hasNextDouble()) {

// make two scan.nextDouble calls to read two double values

// add code here to create a Point object and to update max

}

System.out.printf("furthest point is %s\n", max);

System.out.printf("distance = %1.3f\n",max.distanceFrom(origin));

scan.close();

}

}

5

Test 1 NetID: 201 Fall 2018

PROBLEM 2 : (I ain’t got nobody (9 points))

Code for a partially complete, but correct Body.java file from the NBody assignment is shown on the next
page. Use this code and your knowledge of the assignment to answer these questions.

Part A (3 points)

Can one of the Body constructors be written with a single line using this and calling the other constructor?
Justify/explain your answer briefly.

Part B (3 points)

In the method calcDistance the expression myXPos - b.myXPos is used. Can the expression be replaced
with getX() - b.getX() without affecting the correctness of the method? Justify/explain your answer.

Part C (3 points)

The code shown in calcNetForceExertedByX references this in the boolean expression ! b.equals(this)

Explain in words the purpose of the if statement in this method making explicit reference to the parameter
bodies.

6

09/23/18
14:15:16 1Body.java

/**
 * Celestial Body class for NBody
 * @author ola
 *
 */
public class Body {
 private double myXPos;
 private double myYPos;
 private double myXVel;
 private double myYVel;
 private double myMass;
 private String myFileName;

 /**
 * Create a Body from parameters
 * @param xp initial x position
 * @param yp initial y position
 * @param xv initial x velocity
 * @param yv initial y velocity
 * @param mass of object
 * @param filename of image for object animation
 */
 public Body(double xp, double yp, double xv,
 double yv, double mass, String filename){
 // code not shown
 }

 /**
 * Copy constructor: copy instance variables from one
 * body to this body
 * @param b used to initialize this body
 */
 public Body(Body b){
 // code not shown
 }

 public double getX() {
 return myXPos;
 }
 public double getY() {
 return myYPos;
 }
 public double getXVel() {
 return myXVel;
 }
 /**
 * Return y-velocity of this Body.
 * @return value of y-velocity.
 */
 public double getYVel() {
 return myYVel;
 }

 public double getMass() {
 return myMass;
 }
 public String getName() {
 return myFileName;
 }

 /**
 * Return the distance between this body and another
 * @param b the other body to which distance is calculated
 * @return distance between this body and b
 */

 public double calcDistance(Body b) {
 double dx = myXPos - b.myXPos;
 double dy = myYPos - b.myYPos;
 return Math.sqrt(dx*dx + dy*dy);
 }

 public double calcForceExertedBy(Body p) {
 // not shown
 }

 public double calcForceExertedByX(Body p) {
 // not shown
 }
 public double calcForceExertedByY(Body p) {
 // not shown
 }

 public double calcNetForceExertedByX(Body[] bodies) {
 double s = 0.0;
 for(Body b : bodies) {
 if (! b.equals(this)) {
 s += calcForceExertedByX(b);
 }
 }
 return s;
 }

 public double calcNetForceExertedByY(Body[] bodies) {
 // not shown
 }

 public void update(double deltaT,
 double xforce, double yforce) {
 // not shown
 }

 public void draw() {
 // not shown
 }
}

Test 1 NetID: 201 Fall 2018

PROBLEM 3 : (What does the Hen Weigh, What does the Fox Say (16 points))

In this question you’ll reason about the method countLess shown below. Three calls and the return values
for these calls are given before the code. Parameters a and b are strings that are each a space-delimited
sequence of “words” as seen in the examples.

Call Return Reason
countLess("fox hen fox", "hen hen fox fox") false fox occurs the same number of times
countLess("fox hen fox", "hen hen fox fox fox") true fox and hen both less
countLess("b b", "b b b") true two b’s and three b’s

public boolean countLess(String a, String b) {

List<String> alist = Arrays.asList(a.split(" "));

List<String> blist = Arrays.asList(b.split(" "));

for(String s : alist) {

int ac = Collections.frequency(alist, s);

int bc = Collections.frequency(blist,s);

if (ac >= bc) return false;

}

return true;

}

Part A: 4 points

What do the calls a.split(" ") and (b.split(" ") return? Provide two answers: the Java type these
methods return and their conceptual use in the code.

Part B: 4 points

Explain briefly the purpose of creating the variables alist and blist in the code above. Reference their
use in the calls to Collections.frequency

8

Test 1 NetID: 201 Fall 2018

Part C: 4 points

Provide an example of Strings a and b such that the call countLess(a,b) returns true, a contains
six “words”, b contains seven “words”, and Collections.frequency is called a total of 12 times. Ex-
plain/Justify your answer.

Part D: 4 points

Provide an example of Strings a and b such that the call countLess(a,b) returns false, a contains
six “words”, b contains seven “words”, and Collections.frequency is called a total of two times. Ex-
plain/Justify your answer.

9

Test 1 NetID: 201 Fall 2018

PROBLEM 4 : (Solitary Royalist (20 points))

Two words are anagrams if the letters in one word can re-arranged to obtain the other word. For example:
emigrants, mastering, and streaming are anagrams of each other as are leap, pale, peal, and plea.

The use of class Anagram is shown below. The output of this code appears first and illustrates how words
that are anagrams of each other compare as equal.

Output first:

cone once true

dog cat false

act cat true

Code generating output

Anagram a = new Anagram("cone");

Anagram b = new Anagram("once");

System.out.printf("%s %s %s\n",a,b,a.equals(b));

Anagram c = new Anagram("dog");

Anagram d = new Anagram("cat");

System.out.printf("%s %s %s\n", c,d,c.equals(d));

c = new Anagram("act");

System.out.printf("%s %s %s\n", c,d,c.equals(d));

The code for the Anagram class is given after this problem (the last non-blank page on this test).

The Anagram class uses a concept similar to the idea seen in the APT Anonymous – an Anagram is constructed
from a String and counts of how many occurrences of each letter ’a’ through ’z’ are kept in an array. These
counts determine if two Anagram objects are equal. You can see this in the code for the class shown
on the last exam page. The diagram below shows the array of counts for the Anagram object created
by new Anagram("impressive") – note that the number of occurrences of ’e’ is stored in myCounts[4].
These same counts would be stored for the object created by new Anagram("permissive") since these are
anagrams of each other.

0 0 0 0 2 0 0 0 2 0 0 0 1 0 0 1 0 1 2 0 0 1 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

(questions on next page)

10

Test 1 NetID: 201 Fall 2018

Part A (4 points)

What is printed by this code (two lines are printed, write your answer below each print statement).

Anagram a = new Anagram("rat");

Anagram b = new Anagram("star");

Anagram c = b;

System.out.printf("%s %s %s\n",a,b,a.equals(b));

System.out.printf("%s %s %s\n",b,c,b.equals(c));

Part B (3 points)

In the code at the beginning of the problem the first line of output shown is cone once true. Explain why
the Anagram objects print differently, i.e., as cone and once, but the objects are still equal. Make explicit
reference to methods in the Anagram code.

11

Test 1 NetID: 201 Fall 2018

Part C (3 points)

The code below in method anaStats reads a file containing 45,356 different English words.

The code prints list = 45356, set = 42234

Explain why the set has fewer elements than the list. Be brief. Your answer should be conceptual. You do
not need to make reference to specifics of the Anagram implementation.

public void anaStats() {

File wfile = new File("/data/wordslower.txt");

Scanner scan = new Scanner(wfile);

ArrayList<Anagram> list = new ArrayList<>();

HashSet<Anagram> set = new HashSet<>();

while (scan.hasNext()) {

String s = scan.next();

Anagram ana = new Anagram(s);

list.add(ana);

set.add(ana);

}

System.out.printf("list = %d, set = %d\n",

list.size(), set.size());

}

12

Test 1 NetID: 201 Fall 2018

Part D (4 points)

The code in anaStats on the previous page takes 0.868 seconds to run on a reasonably powered laptop.

If the return statement in Anagram.hashCode is changed to return myCounts[0] + myCounts[3] the code
takes 16.591 seconds to run, but prints the same values. If the return statement is changed to return 5 the
code takes 59.437 seconds to run, but still prints the same values.

Briefly explain why the same, correct values are printed each time, and why the runtime increases for each
example. Be brief. You should be sure to address the increase in runtime and why one increase is greater
than the other.

Part E (6 points)

The code shown on the next page prints these five lines of output.

caret cater crate react recta trace

pares parse pears rapes reaps spare spear

caster caters crates reacts recast traces

opts post pots spot stop tops

arrest rarest raster raters sartre starer

13

Test 1 NetID: 201 Fall 2018

public static void main(String[] args) throws FileNotFoundException {

File wfile = new File("/data/wordslower.txt");

Scanner scan = new Scanner(wfile);

Map<Anagram,List<String>> map = new HashMap<>();

while (scan.hasNext()) {

String s = scan.next();

Anagram ana = new Anagram(s);

if (! map.containsKey(ana)) {

map.put(ana, new ArrayList<String>());

}

map.get(ana).add(s);

}

for(Anagram ana : map.keySet()) {

if (map.get(ana).size() > 5) {

for(String s : map.get(ana)) {

System.out.print(s+" ");

}

System.out.println();

}

}

In words, explain the output shown and why only some keys and values of the map are printed. Specifically
you must answer three questions:

Why does each line contain words that are anagrams of each other. Be sure to reference how the map is
used and what keys and values are in the map.

Explain why the line introduces reductions is not printed as well as in general what keys/values in the
map are not printed.

Explain how the output will change if the 5 is changed to a 6 in the code.

14

09/24/18
21:03:24 1Anagram.java

import java.io.*;
import java.util.*;

public class Anagram {
 private int[] myCounts;
 private String myString;

 public Anagram(String s) {
 myString = s;
 count(s.toLowerCase());
 }

 private void count(String s) {
 myCounts = new int[26];
 for(char ch : s.toCharArray()) {
 int index = ch - ’a’;
 if (index < 0) continue;
 myCounts[index] += 1;
 }
 }

 @Override
 public String toString() {
 return myString;
 }

 @Override
 public boolean equals(Object o) {
 if (this.getClass() != o.getClass()) {
 return false;
 }

 Anagram ana = (Anagram) o;
 for(int k=0; k < myCounts.length; k += 1) {
 if (myCounts[k] != ana.myCounts[k]) {
 return false;
 }
 }
 return true;
 }

 @Override
 public int hashCode() {
 int sum = 0;
 for(int k=0; k < myCounts.length; k+=1) {
 sum += (k+1)*myCounts[k];
 }
 return sum;
 }
}

Test 1 NetID: 201 Fall 2018

16

