
CompSci 101 Sec02 Exam 2 Fall 2025

NAME (print):

Netid:

Which Lecture section are you in:(01 at 10:05am, or 02 at 3:05pm?):

Community Standard Acknowledgement (signature):

Do NOT spend too much time on any one question.

YOU MUST WRITE YOUR NETID on EVERY PAGE THAT IS LOOSE.

Before starting, make sure your test contains 18 numbered pages, followed by the Python
reference sheets. ALL PAGES must be turned in, including the reference pages.

In writing code you do not need to worry about specifying the proper import statements.
Assume that all libraries we’ve discussed are imported in any code you write.

You do not need to use dictionaries for problems 2-4.

If you need more space, there are three blank pages you can write on, but you must indicate
you have done so.

DO NOT WRITE any work to be graded on the Python Reference sheets.

Do NOT discuss this test with anyone until the test is handed back.

Problem Points Grade Estimated Minutes

Problem 1 18 pts. 5

Problem 2 12 pts. 9
(3 parts) (3 mins each)

Problem 3 12 pts. 15
(3 parts) (5 mins each)

Problem 4 35 pts. 35
(5 parts) (7 mins each)

TOTAL: 79 pts. 63 min

1

NETID:

PROBLEM 1 : (What is the output? (18 pts, 5 minutes))

For the following code, write the output to the right of each print statement. The output
for the first three print statements is already shown.

OUTPUT:

seta = set([7,8,6])

print(seta) {7, 6, 8} # in any order

print(sorted(seta)) [6, 7, 8]

print(list(seta)) [8, 7, 6] # in any order

#----------------------------

seta = set([2,1,3,5,6,0,3])

seta.add(9)

seta.add(5)

print(sorted(seta))

#----------------------------

seta = set([2,0,4,5,3,1,3])

for i in range(3):

seta.remove(i)

print(sorted(seta))

#----------------------------

seta = set([2, 6, 7, 3])

setb = set([4, 2, 6, 1])

print(sorted(seta - setb))

print(sorted(setb | seta))

print(sorted(setb & seta))

#----------------------------

lst = [4, 9, 2, ’Z’, ’A’, ’X’]

dct = {5: ’B’, 3: ’H’, 2: ’X’, 9: ’Z’}

print(sorted(dct.values()))

print([k for k in dct if dct[k] in lst])

dct[9] = ’T’

dct[4] = ’V’

print(sorted(dct.keys()))

print(sorted(dct.values()))

2

NETID:

PROBLEM 2 : (List Comprehensions (12 pts, 9 minutes))

For each problem, assign the variable result to a Python expression that calculates the
answer. That means if we changed the list given, your code would still calculate the correct
answer.

Each of these must be written in one line and include a list comprehension.

Here is an example.

The variable result should calculate the list of words from list vehicles that have the
letter ’a’ in their word. Assume each string in the list is one word that is lowercase.

Using the list vehicles below, result would calculate the list:

[’train’, ’airplane’, ’car’, ’longboard’]

vehicles = [’train’, ’airplane’, ’car’, ’truck’, ’bike’, ’longboard’]

result =

ANSWER:

result = [w for w in vehicles if ’a’ in w]

The first problem is on the next page.

3

NETID:

PART A (4 pts), 3 minutes

The variable result should be a new list that contains each word in lst whose last (right-
most) letter appears elsewhere in the word. You can assume all words in lst contain at least
one letter. The words in result should appear in the same order they appear in lst.

Using the list lst below, result would be the list: [’graded’, ’onion, ’serene’]

lst = [’sketch’, ’carrot’, ’graded’, ’onion’, ’serene’, ’get’]

result =

PART B (4 pts), 3 minutes

The variable result should create a new list of integers obtained by adding 101 to the
integers in lst whose last (rightmost) two digits are the same; all other integers in lst are
ignored. Assume that the integers in lst are at least 100. The resulting numbers in result

should appear in the same order as their original numbers appeared in lst.

Using the list lst below, result would calculate the list:

[1500, 334, 523]

lst = [1399, 390, 101, 201, 233, 747, 422]

result =

4

NETID:

PART C (4 pts), 3 minutes

The variable result should be a new list of the last half of each word in lst with even
length; ignore all odd-length words in lst. You can assume all words in lst contain at least
one letter. The words in result are should appear in the same order their original words
appeared in lst.

Using the list lst below, result would calculate the list: [’ecake’, ’rot’, ’ved’]

lst = [’cheesecake’, ’carrot’, ’handtowel’, ’halved’, ’oatmeal’]

result =

5

NETID:

FIRST BLANK PAGE. IF YOU NEED MORE SPACE (MUST TURN IN)

There are still more problems to do!

6

NETID:

PROBLEM 3 : (Short code (12 pts, 15 minutes))

For each of these problems, calculate the answer with code, such that the variable result’s
value should be the desired answer.

If we changed the list(s) or string(s) given your code should still calculate the correct answer.

You can write your answer in more than one line, and with more than one
variable, but be sure result’s value should be the answer.

Here is an example.

Calculate the list of words from list vehicles that have the letter in their word. Assume
each string in the list is one word that is lowercase. The answer should be stored in the
variable result.

Using the list vehicles below, result’s value would be [’train’, ’airplane’, ’car’].

vehicles = [’train’, ’airplane’, ’car’, ’truck’, ’bike’]

result =

ANSWER:

result = [w for w in vehicles if ’a’ in w]

ALTERNATIVE ANSWER:

result = []

for w in vehicles:

if ’a’ in w:

result.append(w)

With both of these the answer is calculated and stored in result.

This problem has three parts. The three problems start on the next page.

7

NETID:

PART A (4 pts), 5 minutes

Given the string of words named phrase, calculate a list of tuples, where each tuple repre-
sents a word from phrase and has two items, 1) the last letter of the word, and 2) the first
letter added immediately before the last letter. The tuple for each word should appear in
the same order the words appear in phrase. The answer should be stored in the variable
result.

Using the string phrase below, result’s value would be:

[(’e’, ’thte’), (’e’, ’littlle’), (’g’, ’egeg’), (’s’, ’layls’),

(’n’, ’oon’), (’a’, ’aa’), (’f’, ’lealf’)]

phrase = "the little egg lays on a leaf"

Note the first word in phrase is ’the’, it’s last letter is ’e’, and the word with the first
letter of ’the’ added immediately before the last letter of the word is ’thte’, resulting in
the tuple (’e’, ’thte’). For the word ’a’, its only letter is both the first and last in the
word.

Write your code below and be sure result’s value is the answer.

8

NETID:

PART B (4 pts), 5 minutes

You are looking to buy a new laptop that has as much memory (in gigabytes) as possible
without overspending. You are given a list of integers named memory and a list of floats
named prices. Assume the two lists have the same number of elements. An integer in
the k-th position of memory corresponds to the float in the k-th position of prices, which
represent a laptop with that amount of memory for that price (in dollars). Calculate the
maximum amount of memory available for a price of at most 1500 dollars. The answer should
be stored in the variable result.

Using the lists below, result’s calculated value would be 16:

Write your code below and be sure result’s value is the answer.

memory = [32, 16, 8, 8, 16, 16]

prices = [2499.99, 1777.77, 655.50, 1122.98, 1425.00, 1900.19]

9

NETID:

PART C (4 pts), 5 minutes

You are given two strings of words named phrase1 and phrase2.

Calculate a list of sorted unique words that are in phrase2 but not phase1. The answer
should be stored in the variable result.

Using the strings phrase1 and phrase2 below, result’s value would be:

[’four’, ’one’, ’pound’, ’two’]

Write your code below and be sure result’s value is the answer.

phrase1 = "nine zero three five seven six eight"

phrase2 = "eight two one six nine pound nine four one"

10

NETID:

SECOND BLANK PAGE IF YOU NEED MORE SPACE (MUST TURN IN), STILL ONE
MORE PROBLEM TO DO!

11

NETID:

PROBLEM 4 : (Movie showings (35 pts, 35 minutes))

This problem is about data related to favorite movies.

A student-ran club runs an annual fundraising event, showing movies in Griffith Film The-
ater. Last year, they recorded survey data from other students that attended. You’ll help
them analyze this data ahead of this year’s new fundraising event.

There are five functions to write in this part. Your functions should work for any valid data,
not just the examples shown.

Most of the problems have datalist as one of the parameters. The parameter datalist is
a list of lists, with each inner list representing information about one person and three or
more of their favorite movies in order by most favorite first. More specifically, each inner list
has:

1. a string representing a student’s NetID,

2. an integer representing the student’s donation at the previous movie event,

3. a float representing their probability of attending the new event (between 0 and 100),
and

4. a list of at least three strings of the person’s favorite movies in order by most favorite
first.

Assume there is only one line in the file for each student.

For example, assume datalist is the lists of lists shown below. Note that the first item in
the first inner list is the data for student with NetID kwn234, the second item is 50 meaning
they donated 50 dollars at the last event, the third item is 65.5, meaning that there is a
65.5% chance the student attends the new event, and the fourth item is a list of three of their
favorite movies in decreasing order of favorites. Their favorite movie is Inception, followed
by Titanic, and then Avatar.

datalist = [

[’kwn234’, 50, 65.5, [’Inception’, ’Titanic’, ’Avatar’]],

[’msm020’, 10, 42.0, [’Parasite’, ’Jaws’, ’Inception’, ’Memento’]],

[’fmh245’, 5, 35.2, [’Gladiator’, ’Amelie’, ’Dune’, ’Parasite’]],

[’ppw123’, 0, 29.9, [’Amelie’, ’Parasite’, ’Gladiator’, ’Avatar’]],

[’lol423’, 0, 90.2, [’Amelie’, ’Inception’, ’Jaws’]],

[’rof667’, 100, 93.4, [’Casablanca’, ’Parasite’, ’Amelie’, ’Jaws’]],

[’nty621’, 25, 44.4, [’Casablanca’, ’Inception’, ’Citizen Kane’, ’300’]],

[’xyz115’, 9, 31.2, [’Avatar’, ’Parasite’, ’Casablanca’]],

[’wal966’, 40, 80.4, [’Gladiator’, ’Amelie’, ’Inception’, ’Parasite’, ’Jaws’]]

]

Go to the next page to start Part A of this problem.

12

NETID:

Part A (7 pts, 7 minutes)

Write the function named topFaves that has two parameters. The first parameter is named
datalist, which is a list of lists in the format described earlier, and the second parameter is
a string named movie representing a movie title.

We repeat the format of datalist, a list of lists, with each inner list having 1) a string
representing a student’s NetID, 2) an integer representing the student’s donation at the
previous movie event, 3) a float representing their probability of attending the new event
(between 0 and 100), 4) a list of at least three strings of the person’s favorite movies in order
by most favorite first.

This function returns the total number of times that the given movie is either the most
favorite or second-most favorite among the students.

For example, assume datalist is the list of lists shown on the first page of this problem. We
give several examples of calls to this function.

call returns
topFaves(datalist, "Jaws") 1

topFaves(datalist, "Amelie") 4

topFaves(datalist, "Inception") 3

Complete the function below.

def topFaves(datalist, movie):

13

NETID:

Part B (7 pts, 7 minutes)

Write the function named likelyFunds that has two parameters. The first parameter is
named datalist, which is a list of lists in the format described earlier, and the second
parameter is a float named chance.

We repeat the format of datalist, a list of lists, with each inner list having 1) a string
representing a student’s NetID, 2) an integer representing the student’s donation at the
previous movie event, 3) a float representing their probability of attending the new event
(between 0 and 100), 4) a list of at least three strings of the person’s favorite movies in order
by most favorite first.

This function returns a sorted list of donations (in increasing order) from datalist for which
the student has a probability of attending at least chance. We give several examples of calls
to this function.

call returns
likelyFunds(datalist, 90.0) [0, 100]

likelyFunds(datalist, 50.5) [0, 40, 50, 100]

likelyFunds(datalist, 0.0) [0, 0, 5, 9, 10, 25, 40, 50, 100]

Complete the function below.

def likelyFunds(datalist, chance):

14

NETID:

Part C (7 pts, 7 minutes)

Write the function named movieLovers that has one parameter named datalist, which is
a list of lists in the format described earlier.

We repeat the format of datalist, a list of lists, with each inner list having 1) a string
representing a student’s NetID, 2) an integer representing the student’s donation at the
previous movie event, 3) a float representing their probability of attending the new event
(between 0 and 100), 4) a list of at least three strings of the person’s favorite movies in order
by most favorite first.

This function returns the sorted list of NetIDs of students that have the most favorite movies
that are not favorites of anyone else. For example, assume datalist is the list on the first
page of this problem, then the call movieLovers(datalist) returns [’nty621’]. This
student has ’Citizen Kane’ and ’300’ as favorite movies and no other student does, so
they have two favorites that are not favorites of any other students. All other students have
zero or one favorite movies that are not favorites of any other students.

Complete the function below.

def movieLovers(datalist):

15

NETID:

Part D (7 pts, 8 minutes)

Write the function named favesThese that has two parameters, one named datalist, which
is a list of lists in the format described earlier, and one named movies which is a list of
strings of movie titles.

We repeat the format of datalist, a list of lists, with each inner list having 1) a string
representing a student’s NetID, 2) an integer representing the student’s donation at the
previous movie event, 3) a float representing their probability of attending the new event
(between 0 and 100), 4) a list of at least three strings of the person’s favorite movies in order
by most favorite first.

This function returns a sorted list of NetIDs of students from favesThese that like at least
one movie in the given list movies. For example, assume datalist is the list on the first
page of this problem, and movies is the list below: movies = [’Jaws’, ’Casablanca’]

then the call favesThese(datalist,movies) returns the list [’lol423’, ’msm020’,

’nty621’, ’rof667’, ’wal966’, ’xyz115’].

Complete the function below.

def favesThese(datalist, movies):

16

NETID:

Part E (7 pts, 7 minutes)

Write the function named processFile that has one parameter named filename, that is the
name of a file with data described in the following format. This function reads in the file
and returns a list of lists described on the first page of this problem.

Each line in filename has the following format. 1) The student’s NetID, 2) a hyphen, 3) their
previous donation 4) a hyphen, 5) the likelihood that student attends the new event, 6) a
hyphen, and 7) three or more phrases separated by a colon.

The first line represents student with NetID kwn234, who donated 50 dollars at the last
event, has a 65.5% chance the student attends the new event, and has favorite movies as
Inception, followed by Titanic, and then Avatar (in that order).

kwn234-50-65.5-Inception:Titanic:Avatar

msm020-10-42.0-Parasite:Jaws:Inception:Memento

[rest of file not shown]

The function processFile opens and reads the file and returns the list of lists described earlier.
For example if the file above is passed to processFile, then processFile returns the list below.

[[’kwn234’, 50, 65.5, [’Inception’, ’Titanic’, ’Avatar’]], ... REST OF LISTS NOT SHOWN]

Complete the function below that has been started for you.

def processFile(filename):

f = open(filename)

datalist = []

for line in f:

17

NETID:

BLANK PAGE 3 IF YOU NEED MORE SPACE (MUST TURN IN)

18

Python Reference Sheet for Compsci 101, Exam 2, Fall 2025

DO NOT WRITE ANYTHING TO BE GRADED ON THESE REFERENCE SHEETS!!

Mathematical Operators

Symbol Meaning Example

+ addition 4 + 5 = 9

- subtraction 9 - 5 = 4

* multiplication 3*5 = 15

/ and // division
6/3 = 2.0
6/4 = 1.5
6//4 = 1

% mod/remainder 5 % 3 = 2

** exponentiation 3**2 = 9, 2**3 = 8

String Operators

+ concatenation "ab"+"cd"="abcd"

* repeat "xo"*3 = "xoxoxo"

Comparison Operators

== is equal to 3 == 3 is True

!= is not equal to 3 != 3 is False

>= is greater than or equal to 4 >= 3 is True

<= is less than or equal to 4 <= 3 is False

> is strictly greater than 4 > 3 is True

< is strictly less than 3 < 3 is False

Boolean Operators
x=5

not flips/negates the value of a bool (not x == 5) is False

and returns True only if both parts of it are True (x > 3 and x < 7) is True
(x > 3 and x > 7) is False

or returns True if at least one part of it is True (x < 3 or x > 7) is False
(x < 3 or x < 7) is True

Type Conversion Functions

int(x) turn x into an integer value int("123") == 123
int(5.8) == 5

 int can fail, e.g., int("abc") raises an error

float(x) turn x into an float value float("2.46") == 2.46

 float can fail, e.g., float("abc") raises an error

str(x) turn x into a string value str(432) == "432"

type(x) the type of x type(1) == int
type(1.2) == float

String Index and Splicing

s="colorful"

Example

s[x] index a character
s[0] == 'c'
s[-3] == 'f'
s[5] == 'f'

s[x:y] splice of string, substring from index x
up to but not including index y

s[2:5] == 'lor'
s[:5] == 'color'
s[4:-1] == 'rfu'
s[5:] == 'ful'

String Functions
s="colorful"

Name Returns Example

.find(str) index of first occurrence s.find("o") == 1

s.find("e") == -1

.rfind(str) index of last occurrence s.rfind("o") == 3

s.rfind("e") == -1

.index(str) same as .find(str), error if str not in string s.index("o") == 1

.count(str) number of occurrences
s.count("o") == 2
s.count("r") == 1
s.count("e") == 0

.strip() copy with leading/trailing whitespace removed " big ".strip() == "big"

.split() list of "words" in s "big bad dog".split() ==
["big","bad", "dog"]

.split(",")

list of "items " in s that are separated by a comma
In general can split on any string, not just a comma,
e.g., s.split(":") will split on a colon and
s.split("gat") will split on the string "gat".

"this,old,man".split(",") ==
["this", "old", "man"]

' '.join(lst) concatenate elements of lst, a list of strings,
separated by ' ' or any string ':'.join(['a','b','c']) == "a:b:c"

.startswith(str) boolean if starts with string s.startswith("color") == True
s.startswith("cool") == False

.endswith(str) boolean if ends with string s.endswith("ful") == True
s.endswith("color") == False

.upper() uppercase of s s.upper() == "COLORFUL"

.lower() lowercase of s "HELLO".lower() == "hello"

.isupper() boolean is uppercase 'A'.isupper() == True
'a'.isupper() == False

.islower() boolean is lowercase 'A'.islower() == False
'a'.islower() == True

.isalpha() boolean is alphabetic character
'3'.isalpha() == False
'?'.isalpha() == False
'z'.isalpha() == True

.capitalize() capitalized s s.capitalize() == "Colorful"

Miscellaneous Functions

help(x) documentation for module x

len(x) length of sequence x, e.g., String or List len("duke") == 4

list(str) a list of the characters from string str list("cards") == ['c','a','r','d','s']

sorted(x) return list that is sorted version of sequence/iterable
x, doesn't change x sorted("cat") == ['a','c','t']

range(x) a list of integers starting at 0 and going up to but not
including x range(5) == [0, 1, 2, 3, 4]

range(start, stop) a list of integers starting at start and going up to but
not including stop range(3, 7) == [3, 4, 5, 6]

range(start, stop, inc) a list of integers starting at start and going up to but
not including stop with increment inc range(3, 9, 2) == [3, 5, 7]

min(x, y, z) minimum value of all arguments min(3, 1, 2) == 1
min("z", "b", "a") == "a"

max(x, y, z) maximum value of all arguments max(3, 1, 2) == 3
max("z", "b", "a") == "z"

abs(x) absolute value of the int or float x abs(-33) == 33
abs(-33.5) == 33.5

List index, splicing and concatenation (+)
lst =[3, 6, 8, 1, 7]

Example

lst[x] index an element lst[0] == 3
lst[-1] == 7

lst[x:y] splice of list, sublist from index x
up to but not including index y

lst[1:3] == [6, 8]
lst[:4] == [3, 6, 8, 1]
lst[3:] == [1,7]

+ operator concatenate two lists [3,4] + [1,3,2] == [3,4,1,3,2]

List Functions
lst =[3, 6, 8, 1, 7]

sum(lst) returns sum of elements in list lst sum([1,2,4]) == 7

max(lst) returns maximal element in lst max([5,3,1,7,2]) == 7

lst.append(...) append an element to lst, changing lst [1,2,3].append(8) == [1,2,3,8]

lst.insert(pos,elt) append elt to lst at position pos, changing lst [1,2,3].insert(1,8) == [1,8,2,3]

lst.extend(lst2) append every element of lst2 to lst [1,2,3].extend([8,9]) ==
[1,2,3,8,9]

lst.remove(elt) remove first occurence of elt from lst [1,2,3,2,3,2].remove(2) ==
[1,3,2,3,2]

lst.sort() sorts the elements of lst
lst = [3,6,8,1,7]
lst.sort()
lst is now [1, 3, 6, 7, 8]

lst.index(elt) return index of elt in lst, error if elt not in lst [1,5,3,8].index(5) == 1

lst.count(elt) return number of occurrences of elt in lst [1,2,1,2,3].count(1) == 2

lst.pop() remove and return last element in lst, so has side-
effect of altering list and returns value.

lst = [3,6,8,1,7]
x = lst.pop()
x is 7, lst is [3,6,8,1]

lst.pop(index)
remove and return element at position index in lst,
so has side-effect of altering list and returns value.
Default index is last value.

lst = [3,6,8,1,7]
x = lst.pop(1)
x is 6, lst is [3,8,1,7]

Math Functions (import math)

math.pi 3.1415926535897931

math.sqrt(num) returns square root of num as float math.sqrt(9) == 3.0

File Functions

open("filename") opens a file, returns file object f = open("foo.txt")

open("filename",mode) specify mode of 'r', 'a', 'w', return file object f = open("foo.txt", "a")

f.read() returns the entire file as one string s = f.read()

Random Functions (import random)

random.choice(list_of_choices) returns a random element from list_of_choices. Gives an error if list_of_choices has
length 0.

random.randint(start, end) Returns a random integer between start and end. Unlike range() and list slicing, the
largest value it can return is end, not end-1.

random.random() Returns a random float between 0 and 1.

Set Functions

set(lst) returns a set of the elements from list lst

s.add(item) adds the item into the set, and returns nothing.

s.update(lst) adds the elements in the list lst into the set, and returns nothing.

s.remove(item) removes the item from the set, error if item not there.

s.union(t) returns new set representing s UNION t, i.e., all elements in either s OR t, t can be
any iterable (e.g., a list)

s.intersection(t) returns new set representing s INTERSECT t, i.e., only elements in both s AND t, t
can be any iterable (e.g., a list)

s.difference(t) returns new set representing s difference t, i.e., elements in s that are not in t

s.symmetric_difference(t) returns new set representing elements in s or t, but not in both

s | t returns/evaluates to union of s and t, both must be sets.

s & t returns/evaluates to intersection of s and t, both must be sets.

s - t returns/evaluates to set with all elements in s that are not in t

s ^ t returns/evaluates to set with all elements from s and t that are not in both s and t

Dictionary Functions

d[key] returns the value associated with key, error if key not in dictionary d

d.get(key) returns value associated with key, returns None if key not in dictionary d

d.get(key,default) returns value associated with key, returns default if key not in d

d.keys() returns a list/view of the keys in dictionary

d.values() returns a list/view of values in dictionary

d.items() returns a list/view of tuples, (key,item) pairs from dictionary

d.update(dict) updates the dictionary with another dictionary dict

