
CompSci 101 Sec01 Exam 3 Fall 2025

NAME (print):

Netid:

Which Lecture section are you in:(01 at 10:05am, or 02 at 3:05pm?):

Community Standard Acknowledgement (signature):

Do NOT spend too much time on any one question.

YOU MUST WRITE YOUR NETID on EVERY PAGE THAT IS LOOSE.

Before starting, make sure your test contains 14 numbered pages, followed by the Python
reference sheets. ALL PAGES must be turned in, including the reference pages.

In writing code you do not need to worry about specifying the proper import statements.
Assume that all libraries we’ve discussed are imported in any code you write.

If you need more space, there are three blank pages you can write on, but you must indicate
you have done so.

DO NOT WRITE any work to be graded on the Python Reference sheets.

Do NOT discuss this test with anyone until the test is handed back.

Problem Points Estimated Minutes

Problem 1 16 pts. 6

Problem 2 18 pts. 14
(3 parts) (4-6 mins each)

Problem 3 45 pts. 45
(5 parts) (8-10 mins each)

TOTAL: 79 pts. 65 min

1

NETID:

PROBLEM 1 : (What is the output? (16 pts) (8 minutes))

For the following code, write the output to the right of each print statement.

OUTPUT:

lista = [’bcd’, ’axy’, ’bop’, ’abc’]

print(sorted(lista))

#---

lista = [’head’, ’shoulders’, ’knees’, ’toes’]

listb = [(max(w), w) for w in set(lista)]

print(sorted(listb))

#---

lista = [’walrus’, ’elephant’, ’hippo’, ’narwhal’]

listb = sorted(lista, reverse=True)

print(listb)

#---

lista = [’couch’, ’chair’, ’seat’, ’arm’, ’sofa’]

listb = sorted(lista, key=len)

print(listb)

#---

lista = [(9,1,5),(2,7),(8,2,5)]

listb = sorted(lista, key=max)

print(listb)

#---

lista = [(6,3,5),(8,1,4),(6,0,5)]

listb = sorted(lista, key=lambda x:x[1])

print(listb)

#---

lista = [(6,0,5),(8,1,4),(6,0,2)]

listb = sorted(lista, key=lambda x: (x[2],x[0]))

print(listb)

#---

d = {4: [’S’, ’A’, ’W’], 5: [’H’], 3: [’C’, ’D’]}

ans = sorted(d.items(), key=lambda x:x[0]+len(x[1]))

print(ans[0])

2

PROBLEM 2 : (Short problems (18 pts) (14 minutes))

This problem has three parts. Your functions should work for any valid data, not only the
examples shown.

PART A (6 pts) (4 minutes)

Consider the following function named mysteryA that has two parameters, a dictionary
named adict in which each key is an integer and each value is a string, and a list of strings
named alist.

1 def mysteryA(adict, alist):

2 ret = set()

3 for val in adict.values():

4 if val in alist:

5 for key in adict:

6 if adict[key] == val:

7 ret.add(key)

8 return ret

QUESTION 1

Consider that adict and alist are as shown below:
adict = {7: ’gorilla’, 3: ’cat’, 14: ’shoe’, 7: ’cat’}
alist = ’the cat and gorilla wore sandals’.split()

What does mysteryA(adict, alist) return? (Order does not matter.)

QUESTION 2

Explain in words what the function mysteryA does? (Briefly, in 1-2 sentences)

QUESTION 3

For the code above, show below how adict.items() can be used to simplify the function; in
particular, remove the nested for-loop at line 5. Rewrite the function using adict.items()

below. The function should always return the same as the code above.

def mysteryA(adict, alist):

ret = set()

return ret

3

PART B (6 pts) (4 minutes) Consider the following function named mysteryB that has
two parameters, a string named word representing a word, and a string named sentence

containing words separated by single spaces.

1 def mysteryB(word, sentence):

2 ret = set()

3 for someword in sentence.split():

4 diff = set(word) & set(someword)

5 ret.add(len(diff))

6 return sorted(ret)

QUESTION 1

Consider that word and sentence are defined below.

word = "soundsystem"

sentence = ’you switch the engine on’

For this input, what does mysteryB(word, sentence) return?

QUESTION 2

Explain in words what the mysteryB function does. (Briefly, in 1-2 sentences)

QUESTION 3

Suppose we want to sort the list of integers so that integers with the same number of digits
are ordered in decreasing order. Which line of code you would modify and what would you
change it to? For example, [9, 6, 3, 89, 43, 21, 521, 101] is in this order.

4

NETID:

PART C (6 pts) (6 minutes)

Write the function named enrollments that has one parameter named lista that is a list
of tuples, where each tuple has three items: a string (department abbreviation), an integer
(course number), and an integer (enrollment).

This function returns a list of the tuples sorted in the following way:

1. Sort in decreasing order of enrollments;

2. If two courses have the same enrollments, then order them by department in alphabet-
ical order;

3. If two courses have the same department and enrollment, then break the tie by placing
the smaller course number before the other.

For example, the call enrollments(lista) with

lista = [(’CS’, 101, 104), (’MATH’, 232, 45), (’CS’, 94, 42),

(’MATH’, 212, 45), (’CS’, 330, 154), (’PHIL’, 374, 56)]

returns the list:

(’CS’, 330, 154), (’CS’, 101, 104), (’CS’, 94, 56),

(’PHIL’, 374, 56), (’MATH’, 212, 45), (’MATH’, 232, 45)]

Complete the function below.

def enrollments(lista):

5

NETID:

BLANK PAGE IF YOU NEED MORE SPACE (MUST TURN IN)

THERE ARE STILL MORE PROBLEMS TO SOLVE

6

NETID:

PROBLEM 3 : (Wednesday Schedules (48 pts) (48 minutes))

This problem is about data related to students’ Wednesday schedules in fall 2025.

There are five functions to write in this part. Your functions should work for any valid data,
not just the examples shown.

Most of the problems have datalist as one of the parameters. The parameter datalist is a
list of lists, with each inner list representing information about one student the courses they
take on Wednesdays. More specifically, each inner list has:

1. a string representing a student name,

2. an integer representing the student’s id number,

3. a string representing the home department of the student’s major, which is possibly
“Undeclared”,

4. a list of departments of the courses taken by the student, in order from earliest to
latest in the day, on Wednesdays.

For example, assume datalist is the lists of lists shown below. The first inner list represents
the student named Shah, whose student id number is 342128, has not yet declared their
major, and has three courses on Wednesdays: first they have a CompSci course, then an
Econ course, and lastly another CompSci course.

Assume that each student name is unique and appears only once in datalist, and that each
student is undeclared or has one major. Students have between zero and eight courses on
Wednesdays.

datalist = [

[’Shah’, 342128, ’Undeclared’, [’CompSci’, ’Econ’, ’CompSci’]],

[’Singh’, 465621, ’CompSci’, [’Econ’, ’Latin’, ’CompSci’, ’Dance’]],

[’Gates’, 126884, ’Econ’, [’CompSci’, ’Math’, ’Math’, ’Econ’]],

[’Bowman’, 634645, ’Psy’, [’Econ’, ’Psy’, ’CompSci’, ’CompSci’]],

[’French’, 227712, ’Psy’, [’Psy’, ’Math’, ’Psy’, ’Math’]],

[’Dole’, 937712, ’Dance’, [’Math’, ’Dance’, ’Spanish’, ’CompSci’]],

[’Cook’, 743953, ’CompSci’, []],

[’Earle’, 335672, ’CompSci’, [’CompSci’, ’CompSci’, ’CompSci’]],

[’Nixon’, 521672, ’Undeclared’, [’Latin’, ’Econ’, ’CompSci’, ’Econ’, ’Psy’]]

]

In solving a part of this problem, you may call any of the functions of preceding
parts. For example, Part A must be solved on its own, Part C can call the functions from
Parts A and B, and so on.

Go to the next page to start Part A of this problem.

7

NETID:

Part A (9 pts) (9 minutes)

Write the function named beginsOrEndsWith that has two parameters named datalist,
which is a list of lists in the format described earlier, and dept, a string that is a department
at Duke.

We repeat the format of parameter datalist, which is a list of lists. Each inner list has: (1)
a string representing a student name, (2) an integer representing the student’s id number (3)
a string representing the home department of the student’s major (possibly “Undeclared”),
and (4) a list of departments of the courses taken by the student, in order from earliest to
latest in the day, on Wednesdays.

This function returns the number of students whose Wednesdays begin or end (possibly
both) with a course from the parameter department dept.

For example, using the datalist on the first page of this problem, the call
beginsOrEndsWith(datalist, ’CompSci’) returns 5 since there are five students whose
first and/or last courses are CompSci courses.

Complete the function below.

def beginsOrEndsWith(datalist, dept):

8

NETID:

Part B (9 pts) (9 minutes)

Write the function named countMajorMatches that has one parameter named datalist,
which is a list of lists in the format described earlier.

We repeat the format of parameter datalist, which is a list of lists. Each inner list has: (1)
a string representing a student name, (2) an integer representing the student’s id number (3)
a string representing the home department of the student’s major (possibly “Undeclared”),
and (4) a list of departments of the courses taken by the student, in order from earliest to
latest in the day, on Wednesdays.

This function returns a sorted list of tuples, where each tuple has two items. The first item
is a string that is the name of a student with a declared major, and the second item is an
integer that is the number of courses on Wednesdays in the same department as their major.
No student with an undeclared major is represented in the returned list. The
tuples are sorted first by the second item, the count, in increasing order. Ties are broken by
the students’ orders in datalist.

For example, using the datalist described on the first page of this problem, the call
countMajorMatches(datalist) returns the list of tuples:

[(’Cook’, 0), (’Singh’, 1), (’Gates’, 1), (’Bowman’, 1), (’Dole’, 1),

(’French’, 2), (’Earle’, 3)].

def countMajorMatches(datalist):

9

NETID:

Part C (9 pts) (9 minutes)

Write the function named takenMostAt that has two parameters, one named datalist,
which is a list of lists in the format described earlier, and one named num, which is a value
between 0 and 7.

We repeat the format of parameter datalist, which is a list of lists. Each inner list has: (1)
a string representing a student name, (2) an integer representing the student’s id number (3)
a string representing the home department of the student’s major (possibly “Undeclared”),
and (4) a list of departments of the courses taken by the student, in order from earliest to
latest in the day, on Wednesdays.

This function returns a sorted list of distinct departments with the most students that
take a course from their department as the num’th course in their Wednesday schedule (if
any); if there is more than one department in the list, they are sorted in alphabetical order.

For example, using the datalist described on the first page of this problem, the call
takenMostAt(datalist, 1) returns [’Econ’, ’Math’] since, for each of Econ and Math,
there are two students that take their courses at index 1 in their schedules and all other de-
partments have 0 or 1 students taking a course in those departments at that index. Similarly,
takenMostAt(datalist, 3) returns [’CompSci’, ’Econ’].

def takenMostAt(datalist, num):

10

NETID:

BLANK PAGE IF YOU NEED MORE SPACE (MUST TURN IN)

THERE ARE STILL MORE PROBLEMS TO SOLVE

11

NETID:

Part D (9 pts) (9 minutes)

Write the function named enrollmentsByKind that has one named datalist, which is a
list of lists in the format described earlier.

We repeat the format of parameter datalist, which is a list of lists. Each inner list has: (1)
a string representing a student name, (2) an integer representing the student’s id number (3)
a string representing the home department of the student’s major (possibly “Undeclared”),
and (4) a list of departments of the courses taken by the student, in order from earliest to
latest in the day, on Wednesdays.

This function returns a dictionary mapping each department to a list of two integers. The first
integer (at index 0) is the number of courses taken in that department by majors (students
whose major is that department), and the second integer (at index 1) is the number of
courses taken in that department by non-majors (students whose major is undeclared or in
a different department).

For example, using the datalist on the first page of this problem,
enrollmentsByKind(datalist) returns the dictionary:

{’CompSci’: [4, 7], ’Dance’: [1, 1], ’Econ’: [1, 5], ’Latin’: [0,2],

’Math’: [0, 5], ’Psy’: [3, 1], ’Spanish’: [0, 1]}

def enrollmentsByKind(datalist)

12

NETID:

Part E (9 pts) (9 minutes)

Write the function named majorConnections that has two parameters, one named
datalist, which is a list of lists in the format described earlier, and another named dept

that is a name of a department.

We repeat the format of parameter datalist, which is a list of lists. Each inner list has: (1)
a string representing a student name, (2) an integer representing the student’s id number (3)
a string representing the home department of the student’s major (possibly “Undeclared”),
and (4) a list of departments of the courses taken by the student, in order from earliest to
latest in the day, on Wednesdays.

This function returns a dictionary mapping each department to the number of times their
courses are taken by students majoring in parameter department dept. Note that “Unde-
clared” is not a department and thus is not a key in the returned dictionary.

For example, using the datalist on the first page of this problem,
majorConnections(datalist, ’Psy’) returns the dictionary:

{’Psy’: 3, ’CompSci’: 2, ’Econ’: 1, ’Math’: 2}, since between the two Psy ma-
jors, they take 3 Psy courses, 2 CompSci courses, and so on.

def majorConnections(datalist, dept):

13

NETID:

BLANK PAGE IF YOU NEED MORE SPACE (MUST TURN IN)

14

Python Reference Sheet for Compsci 101, Exam 3, Fall 2025
DO NOT WRITE ANYTHING TO BE GRADED ON THESE REFERENCE SHEETS!!

Mathematical Operators
Symbol Meaning Example

+ addition 4 + 5 = 9

- subtraction 9 - 5 = 4

* multiplication 3*5 = 15

/ and // division
6/3 = 2.0
6/4 = 1.5
6//4 = 1

% mod/remainder 5 % 3 = 2

** exponentiation 3**2 = 9, 2**3 = 8

String Operators
+ concatenation "ab"+"cd"="abcd"

* repeat "xo"*3 = "xoxoxo"

Comparison Operators
== is equal to 3 == 3 is True

!= is not equal to 3 != 3 is False

>= is greater than or equal to 4 >= 3 is True

<= is less than or equal to 4 <= 3 is False

> is strictly greater than 4 > 3 is True

< is strictly less than 3 < 3 is False

Boolean Operators
x=5

not flips/negates the value of a bool (not x == 5) is False

and returns True only if both parts of it are True (x > 3 and x < 7) is True
(x > 3 and x > 7) is False

or returns True if at least one part of it is True (x < 3 or x > 7) is False
(x < 3 or x < 7) is True

Type Conversion Functions

int(x) turn x into an integer value int("123") == 123
int(5.8) == 5

 int can fail, e.g., int("abc") raises an error

float(x) turn x into an float value float("2.46") == 2.46

 float can fail, e.g., float("abc") raises an error

str(x) turn x into a string value str(432) == "432"

type(x) the type of x type(1) == int
type(1.2) == float

String Index and Splicing
s="colorful""

Example
s[x] index a character s[0] == 'c'

s[-3] == 'f'

s[5] == 'f'

s[x:y] splice of string, substring from index x
up to but not including index y

s[2:5] == 'lor'
s[:5] == 'color'
s[4:-1] == 'rfu'
s[5:] == 'ful'

String Functions
s="colorful"

Name Returns Example
.find(str) index of first occurrence s.find("o") == 1

s.find("e") == -1

.rfind(str) index of last occurrence s.rfind("o") == 3

s.rfind("e") == -1

.index(str) same as .find(str), error if str not in string s.index("o") == 1

.count(str) number of occurrences
s.count("o") == 2
s.count("r") == 1
s.count("e") == 0

.strip() copy with leading/trailing whitespace removed " big ".strip() == "big"

.split() list of "words" in s "big bad dog".split() ==
["big","bad", "dog"]

.split(",")

list of "items " in s that are separated by a comma
In general can split on any string, not just a comma, e.g.,
s.split(":") will split on a colon and s.split("gat") will split
on the string "gat".

"this,old,man".split(",") ==
["this", "old", "man"]

' '.join(lst) concatenate elements of lst, a list of strings, separated by ' '
or any string ':'.join(['a','b','c']) == "a:b:c"

.startswith(str) boolean if starts with string s.startswith("color") == True
s.startswith("cool") == False

.endswith(str) boolean if ends with string s.endswith("ful") == True
s.endswith("color") == False

.upper() uppercase of s s.upper() == "COLORFUL"

.lower() lowercase of s "HELLO".lower() == "hello"

.isupper() boolean is uppercase 'A'.isupper() == True
'a'.isupper() == False

.islower() boolean is lowercase 'A'.islower() == False
'a'.islower() == True

.isalpha() boolean is alphabetic character
'3'.isalpha() == False
'?'.isalpha() == False
'z'.isalpha() == True

.capitalize() capitalized s s.capitalize() == "Colorful"

.replace(str1, str2) replace all occurrences of str1 with str2 s.replace('o','y') == "cylyrful"

.replace(str1, str2,n) replace the first n occurrences of str1 with str2 s.replace('o','y',1) == "cylorful"

Miscellaneous Functions
help(x) documentation for module x

len(x) length of sequence x, e.g., String or List len("duke") == 4

list(str) a list of the characters from string str list("cards") == ['c','a','r','d','s']

sorted(x) return list that is sorted version of sequence/iterable x,
doesn't change x sorted("cat") == ['a','c','t']

range(x) a list of integers starting at 0 and going up to but not
including x range(5) == [0, 1, 2, 3, 4]

range(start, stop) a list of integers starting at start and going up to but not
including stop range(3, 7) == [3, 4, 5, 6]

range(start, stop, inc) a list of integers starting at start and going up to but not
including stop with increment inc range(3, 9, 2) == [3, 5, 7]

min(x, y, z) minimum value of all arguments min(3, 1, 2) == 1
min("z", "b", "a") == "a"

max(x, y, z) maximum value of all arguments max(3, 1, 2) == 3
max("z", "b", "a") == "z"

abs(x) absolute value of the int or float x abs(-33) == 33
abs(-33.5) == 33.5

List index, splicing and concatenation
lst =[3, 6, 8, 1, 7]

Example

lst[x] index an element lst[0] == 3
lst[-1] == 7

lst[x:y] splice of list, sublist from index x
up to but not including index y

lst[1:3] == [6, 8]
lst[:4] == [3, 6, 8, 1]
lst[3:] == [1,7]

+ operator concatenate two lists [3,4] + [1,3,2] == [3,4,1,3,2]

List Functions
lst =[3, 6, 8, 1, 7]

sum(lst) returns sum of elements in list lst sum([1,2,4]) == 7

max(lst) returns maximal element in lst max([5,3,1,7,2]) == 7

lst.append(...) append an element to lst, changing lst [1,2,3].append(8) == [1,2,3,8]

lst.insert(pos,elt) append elt to lst at position pos, changing lst [1,2,3].insert(1,8) == [1,8,2,3]

lst.extend(lst2) append every element of lst2 to lst [1,2,3].extend([8,9]) ==
[1,2,3,8,9]

lst.remove(elt) remove first occurence of elt from lst [1,2,3,2,3,2].remove(2) ==
[1,3,2,3,2]

lst.sort() sorts the elements of lst
lst = [3,6,8,1,7]
lst.sort()
lst is now [1, 3, 6, 7, 8]

lst.index(elt) return index of elt in lst, error if elt not in lst [1,5,3,8].index(5) == 1

lst.count(elt) return number of occurrences of elt in lst [1,2,1,2,3].count(1) == 2

lst.pop() remove and return last element in lst, so has side-effect of
altering list and returns value.

lst = [3,6,8,1,7]
x = lst.pop()
x is 7, lst is [3,6,8,1]

lst.pop(index)
remove and return element at position index in lst, so has
side-effect of altering list and returns value. Default index
is last value.

lst = [3,6,8,1,7]
x = lst.pop(1)
x is 6, lst is [3,8,1,7]

Math Functions (import math)
math.pi 3.1415926535897931

math.sqrt(num) returns square root of num as float math.sqrt(9) == 3.0

File Functions
open("filename") opens a file, returns file object f = open("foo.txt")

open("filename",mode) specify mode of 'r', 'a', 'w', return file object f = open("foo.txt", "a")

f.read() returns the entire file as one string s = f.read()

Random Functions (import random)
random.choice(list_of_choices) returns a random element from list_of_choices. Gives an error if list_of_choices has length 0.

random.randint(start, end) Returns a random integer between start and end. Unlike range() and list slicing, the largest
value it can return is end, not end-1.

random.random() Returns a random float between 0 and 1.

Set Functions
set(lst) returns a set of the elements from list lst

s.add(item) adds the item into the set, and returns nothing.

s.update(lst) adds the elements in the list lst into the set, and returns nothing.

s.remove(item) removes the item from the set, error if item not there.

s.union(t) returns new set representing s UNION t, i.e., all elements in either s OR t, t can be any
iterable (e.g., a list)

s.intersection(t) returns new set representing s INTERSECT t, i.e., only elements in both s AND t, t can be
any iterable (e.g., a list)

s.difference(t) returns new set representing s difference t, i.e., elements in s that are not in t

s.symmetric_difference(t) returns new set representing elements in s or t, but not in both

s | t returns/evaluates to union of s and t, both must be sets.

s & t returns/evaluates to intersection of s and t, both must be sets.

s - t returns/evaluates to set with all elements in s that are not in t

s ^ t returns/evaluates to set with all elements from s and t that are not in both s and t

Dictionary Functions
d[key] returns the value associated with key, error if key not in dictionary d

d.get(key) returns value associated with key, returns None if key not in dictionary d

d.get(key,default) returns value associated with key, returns default if key not in d

d.keys() returns a list/view of the keys in dictionary

d.values() returns a list/view of values in dictionary

d.items() returns a list/view of tuples, (key,item) pairs from dictionary

d.update(dict) updates the dictionary with another dictionary dict

Lambda Functions
lst =[('c', [4, 2, 8]), ('h', [2,7,1,6]), ('b', [3, 9])]

f = lambda x : len(x[1])
y = sorted(lst, key=f)

y is [('b', [3, 9]), ('c', [4, 2, 8]), ('h', [2,7,1,6])] as it sorts tuples on the
length of the lists in the index 1 position

y = sorted(lst, key= lambda x:
x[1])

y is [('h', [2,7,1,6]), ('b', [3, 9]), ('c', [4, 2, 8])] as it sorts tuples based
on the first element in each list (the 2, 3, and 4)

Image Library Functions
Image.open(fname) opens and returns image

im.show() displays image im

im.getdata() returns generator of all pixels in im

im.putdata(pixlist) modifies image by setting all pixels to pixlist

im.size returns tuple that is (width,height) of image

Image.new("RGB",size) creates and returns a new image with dimensions of tuple size

