
Test 1 Review: CompSci 6

Name (print):

Honor Acknowledgment (signature):

DO NOT SPEND MORE THAN 15 MINUTES ON ANY OF THE QUESTIONS! If you do not

see the solution to a problem right away, move on to another problem and come back to it later.

The �nal page is a list of common methods of classes we have studied in class so that you do not

need to memorize such details.

Before starting, make sure your test contains 12 pages.

If you think there is a syntax error, then ask.

value grade

Problem 1 10 pts.

Problem 2 15 pts.

Problem 3 9 pts.

Problem 4 21 pts.

TOTAL: 55 pts.

1

PROBLEM 1 : (Why the cover up?: (10 pts))

Part A (4 points)

Complete the method, isInside, that returns true if the given Point object is inside the given

Mover object and false otherwise. In this case, inside is de�ned as within or on the boundary of

the rectangle that surrounds the Mover object (i.e., as de�ned by its center and size).

For example, if m represents a Mover with top-left coordinates (100; 100) and dimensions 200x100

pixels, then the table below shows the results of several calls to isInside:

Function call Return Value

isInside(new Point(150, 150), m) true

isInside(new Point(100, 100), m) true

isInside(new Point(300, 200), m) true

isInside(new Point(50, 150), m) false

isInside(new Point(99, 99), m) false

Complete the method isInside below:

/**

* @return true if pt is within the rectangle that bounds m,

* or false otherwise

*/

public boolean isInside (Point pt, Mover m)

{

}

2

Part B (6 points)

Complete the method, averageArea, that returns the average area of a collection of Mover objects.

Since a Mover can paint itself as anything though, you should use the rectangle that bounds

the Mover object, i.e., its size, to calculate its area. Recall that the area of a rectangle is its

width �height. If the given collection is empty, i.e., its size is 0, then the method should return 0.

Complete the method averageArea below:

/**

* @return the average of the areas of all the rectangles that bound the

* shapes drawn in the list movers, or 0 if the list is empty

*/

public double averageArea (ArrayList<Mover> movers)

{

}

3

PROBLEM 2 : (Extreme Weather (15 points))

Part A (6 points)

The hailstone sequence, sometimes called the 3n+ 1 sequence, is de�ned by a function f(n):

f(n) = n / 2 if n is even

= 3n + 1 if n is odd

We can use the value computed by f(n) as successive arguments of f(n) as shown below, the successive

values of n form the hailstone sequence (it is called a hailstone sequence because the numbers go up and

down mimicking the process that forms hail).

while (n != 1)

{

n = f(n);

}

Although it is conjectured that this loop always terminates, no one has been able to prove it. However, it

has been veri�ed by computer for an enormous range of numbers. Several sequences are shown below with

the initial value of n on the left.

7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

8 4 2 1

9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

Complete the method, hailstone, that returns the number of steps in the hailstone sequence that starts

with a given number (i.e., for the �rst three examples shown above, the function should return 17, 4, and

20, respectively).

public int hailstone (int n)

{

}

4

Part B (9 points)

Complete the function, longestHailstone, that, given a list of numbers, returns the one that yields the

longest hailstone sequence. You can assume that the list contains only positive integer values.

In order to get full credit, you must use the method you wrote in the previous part to determine how long

each sequence is.

Complete longestHailstone below:

public int longestHailstone (ArrayList<Integer> numbers)

{

}

5

PROBLEM 3 : (Working Together (21 pts))

Assume that every player on a team is modelled using the class Player declared as shown below.

public class Player

{

private String myName;

private ArrayList<Integer> myMinutes; // minutes played in each game

public Player (String name, ArrayList<Integer> minutes)

{

myName = name;

myMinutes = minutes;

}

public String getName ()

{

return myName;

}

public int getMinutesForGame (int whichGame)

{

// assume 0 <= whichGame < myMinutes.length

return myMinutes.get(whichGame).intValue();

}

public int getNumberGamesPlayed ()

{

return myMinutes.size();

}

}

6

Part A (10 points)

Write the function readTeam below that reads data from a �le and stores it in an initially empty list of

Player's. Assume that the text �le with team information being read is in the format shown below. There

are two lines for each player in the team. The �rst line contains �rst and last name, and the second line

contains a list of the number of minutes played in each game during the season. Note that the number of

games played varies from player to player.

A sample data �le is shown below with the �rst player with 4 games and the second play with 7 games:

Fred Smith

1 13 5 1

Chris Jones

8 2 5 6 4 7 16

Complete readTeam below.

/**

* Reads all player information from the file represented by

* the parameter Scanner and returns it in a list

*/

public ArrayList<Player> readTeam (Scanner input)

{

input.useDelimiter("\n");

}

7

Part B (4 points)

Write the function totalNumberOfMinutes below that, given a Player, returns the total number of minutes

that player played during the season.

Given the example players in the previous part, your function should return the value 20 minutes when

called with the Player object representing Fred Smith and 48 minutes when called with the Player object

representing Chris Jones.

Complete totalNumberOfMinutes below. Note, this method is not part of the Player class and so does not

have access to its private instance variables.

/**

* Return the sum of all the minutes player played.

*/

public int totalNumberOfMinutes (Player player)

{

}

8

Part C (7 points)

Write the function mostMinutes below that, given a list of players representing a team, returns the Player

who has played the most total minutes during the season.

Given the example team from the previous parts, your function should return the Player object representing

Chris Jones because he played for 48 total minutes, while his only other team member played for only 20

minutes.

You will not receive full credit for this part unless you call the function totalNumberOfMinutes that

you wrote in Part B at least once and use its result in determining the result of this function. Assume

totalNumberOfMinutes works as speci�ed regardless of what you wrote in Part B.

Complete mostMinutes below.

/**

* Return the player that has played the most minutes regardless

* of the number of games played.

*/

public Player mostMinutes (ArrayList<Player> team)

{

}

9

PROBLEM 4 : (It never stops: (9 points))

Complete the sub-class of Mover such that it changes the color used to draw itself each step of the animation.

The class will be constructed with a collection of colors that determines the order in which the colors will

change over time. In other words, each time the move method is called, it should change some state in the

object such that the next color in the list will be used to draw the shape when paint is called. When the

end of the list is reached, it should start over with the �rst color in the list.

Complete the class ColorCycler started below by adding any instance variables you may need, initializing

them in the constructor, and �lling in the methods paint and move.

public class ColorCycler extends Mover

{

private ArrayList<Color> myColors;

// add any additonal instance variables you may need

public ColorCycler (Point center, Dimension size, Point velocity, ArrayList<Color> colors)

{

super(center, size, velocity, colors.get(0));

myColors = colors;

// initialize any other instance variables here

}

public void paint (Graphics pen)

{

pen.setColor();

// rest of implementation not shown

}

public void move (Dimension bounds)

{

}

}

10

Throughout this test, assume that the following classes and methods are available. These classes are taken

directly from the material used in class. There should be no methods you have never seen before here.

Point

public class Point {

// coordinates

public int x;

public int y;

// Constructs and initializes a point at the

// specified (x,y) location.

public Point (int x, int y)

// Returns distance from this point to given one

public int distance (Point other)

// Adds dx and dy to this point's coordinates

public void translate (int dx, int dy)

}

Dimension

public class Dimension {

// lengths

public int width;

public int height;

// Constructs and initializes a dimension

// with the specified (w, h) lengths.

public Dimension (int w, int h)

}

Color

public class Dimension {

// Constructs and initializes a color with

// the specified (r, g, b) components.

public Color (int red, int green, int blue)

// Returns the red component

public int getRed ()

// Returns the green component

public int getGreen ()

// Returns the blue component

public int getBlue ()

// Returns a color that is brighter than

// this one

public Color brighter ()

// Returns a color that is darker than

// this one

public Color darker ()

}

Random

public class Random {

// Creates a new random number generator.

public Random ()

// Returns pseudorandom, uniformly distributed,

// int value between 0 (inclusive) and the

// specified value (exclusive)

public int nextInt (int n)

}

ArrayList

public class ArrayList {

// Constructs an empty list

public ArrayList ()

// Returns the number of elements in this list.

public int size ()

// Searches for the first occurence of the given

// argument, returns -1 if not found

public int indexOf (Object itemm)

// Returns element at index in this list.

public Object get (int index)

// Appends specified element to end of this list.

public boolean add (Object o)

}

Scanner

public class Scanner

{

// Create Scanner for that reads data from a file.

public Scanner (File file)

// Create Scanner for that reads data from a string.

public Scanner (String str)

// Change delimiters used to separate items

public void useDelimiter (String characters)

// Check if more items are available

public boolean hasNext ()

// Get next delimited item as a string

public String next ()

// Get next delimited item as an integer value

public int nextInt ()

}

11

Integer

public class Integer {

// The smallest value of type int

public static final int MIN_VALUE

// The largest value of type int

public static final int MAX_VALUE

// Returns the integer represented by the

// argument as a decimal integer.

public static int parseInt (String s)

// Returns a new String object representing

// the specified integer.

public static String toString (int i)

// Returns value of Integer object as an int

public int intValue ()

}

String

public class String {

// Returns length of this string.

public int length ()

// Returns index within this string of first

// occurrence of the specified substring.

// If str is not found, then returns -1

public int indexOf (String str)

// Returns index within this string of last

// occurrence of the specified substring.

// If str is not found, then returns -1

public int lastIndexOf (String str)

}

12

