
Test 2 Analysis: Compsci 06

Owen Astrachan

April 25, 2011

Name:

NetID/Login:

Honor code acknowledgment (signature)

value grade
Problem 1 24 pts.

Problem 2 22 pts.

Problem 3 18 pts.

Problem 4 10 pts.

TOTAL: 74 pts.

This test is about analyzing code that was used on the second test in spring 2011. For each question several
responses are given. You are to judge the responses as correct or incorrect. You must give an explanation
in addition to your response, explaining in words why you think the answer given is correct or why it is
incorrect. Don’t write more than a few sentences.

1

PROBLEM 1 : (Myrmecophagous? 24 points)

Write Python statement(s)/expression(s) to solve each of the problems below.

Consider the list lista below used to illustrate each problem.

lista = ["sloth", "aardvark", "pangolin", "pangolin", \
"aardvark", "sloth", "sloth", "numbat","anteater"]

This list is used to illustrate the problems, but the code you write should work with any values stored in
lista, don’t write code that depends on any particular values stored in the list.

Part A (4 points)

Write Python code that stores in variable uniq the number of different values in lista — this is five in the
example above since the five different strings in lista are ’sloth’, ’aardvark’, ’pangolin’, ’numbat’, ’anteater’.

1. uniq = 0
repeats = []
for word in lista:

if word not in repeats:
uniq += 1
repeats.append(word)

2. uniq = 0
slist = sorted(lista)
for i in range(1,len(slist)):

if slist[i] != slist[i-1]:
uniq += 1

3. uniq = len(set(lista))

Part B (4 points)

Write Python code that stores in variable smalls a list of of the strings in lista that have fewer than six
letters in them. This would be ["sloth", "sloth", "sloth"] in the example above. The words in smalls
should be in the same order they appear in lista.

1. smalls = [x for x in list(a) if len(x) <= 6]

2. smalls = []
for elt in lista:

if len(elt) < 6:
smalls.append(lista)

Part C (4 points)

Write Python code that stores in variable most the number of times the most frequently occurring string in
lista occurs — this is three in the example above (for "sloth").

1. most = max([list.count(x) for x in lista])

2. dc = {}
for a in lista:

dc[a] = dc.get(a,0)+1
pairs = sorted(dc.items(), key=itemgetter(1), reverse=True)
most = pairs[0][1]

2

3. c = {}
for elt in lista:

if elt not in c:
c[elt] = 0

c[elt] += 1
most = max(c.values())

Part D (12 points)

Write Python code that stores in variable ordered a list of the unique strings in lista in order from most
frequently occuring to least frequently occuring. Ties should be broken alphabetically, e.g., "aardvark"
appears before "pangolin" in ordered below (using lista as above) because they both occur twice but
"aardvark" comes before "pangolin" alphabetically. Using lista above the values stored in ordered are:

ordered == ["sloth", "aardvark", "pangolin", "anteater", "numbat"]

because the number of occurrences of each of these is 3, 2, 2, 1, and 1, respectively. Note that "anteater"
is alphabetically before "numbat" and both occur one time. (You’ll earn more than half-credit if strings are
ordered correctly by number of occurrences, but you don’t break ties alphabetically.)

1. counts = sorted([(elt,lista.count(elt)) for elt in set(lista)])
sc = sorted(counts, key=itemgetter(1), reverse=True)
ordered = [e[0] for e in sc]

2. d = {}
for elt in lista:

d[elt] = d.get(elt,0) + 1
alph = sorted(d.items())
num = sorted(alph, key=itemgetter(1),reverse=True)
ordered = [elt[1] for elt in num]

3. uni = sorted(set(lista))
data = sorted([ista.count(x) for x in uni], reverse=True)
ordered = []
for num in data:

for word in uni:
if lista.count(word) == num:

ordered.append(word)

3

PROBLEM 2 : (Playing Dice With the Universe (22 points))

Part A (3 points)

No analysis on this part

Part B (3 points)

In the Hangman program a variable display was used by most students to represent what the user is shown
before each guess, e.g., something like _ a _ _ a _ _ for pancake if the user has guessed an ’a’ correctly.

Two different initializations were used by students, both are shown below (students used one or the other,
but not both in the same program).

slen = len(secret)
display = "_"*slen

alternative

slen = len(secret)
display = ["_"]*slen

The first creates a string of underscores, the second creates a list of underscores, in each case of the appropriate
length. Give a reason to prefer one initialization over the other. There is no correct answer here per se, but
you will be evaluated on your justification/reasoning. Be brief.

Consider these three responses: Analyze each one as a viable response. Be brief.

1. The first choice, using a string, is better because printing a string will look better than printing a list
– the latter has brackets, commas, etc.

2. The second choice is better because lists are mutable whereas strings are not, so changing one element
of a list is easier than changing one element of a string — the latter isn’t possible, instead a new string
must be created.

3. Strings look better, but are immutable. Lists are mutable, but look ugly. The code to print a list in a
nice way is much simpler to write than the code to create a new string with the letter ’e’ in each blank
spot it’s supposed to be in depending on the word being checked. So use lists instead.

Part C (8 points)

No analytical part.

Part D (8 points)

4

Program
The program below generates the output on the right when run,
showing that each simulated dice roll (a,b) occurs roughly the same
number of times. However, the number of times each sum is rolled
is different since there is only one way to roll a two: (1,1), but six
ways to roll a seven: (1,6), (2,5), (3,4), (4,3), (5,2), (6,1). Write
the function get_totals that returns a dictionary in which the key
is a number from 2-12, inclusive, representing the sum of rolling
two simulated dice; the corresponding value is the number of times
the total occurs. The parameter to get_totals is the dictionary
returned by track_rolls.

import random

def get_roll():
return (random.randint(1,6), random.randint(1,6))

def track_rolls(repeats):
d = {}
for x in range(0,repeats):

roll = get_roll()
if roll not in d:

d[roll] = 0
d[roll] += 1

for key in sorted(d.keys()):
print key,d[key]

return d

def main():
d = track_rolls(10000)

if __name__ == "__main__":
main()

For example, adding the line p = get_totals(d) in the function
main and printing the contents of p should result in the output below
given a dictionary storing information as shown on the right (the
output won’t necessarily be sorted by sum):

2 263

3 575

4 875

5 1121

6 1386

7 1627

8 1299

9 1152

10 888

11 531

12 283

Output from Running Program

(1, 1) 263
(1, 2) 283
(1, 3) 289
(1, 4) 261
(1, 5) 293
(1, 6) 270
(2, 1) 292
(2, 2) 297
(2, 3) 269
(2, 4) 297
(2, 5) 270
(2, 6) 254
(3, 1) 289
(3, 2) 284
(3, 3) 272
(3, 4) 245
(3, 5) 242
(3, 6) 295
(4, 1) 307
(4, 2) 246
(4, 3) 262
(4, 4) 273
(4, 5) 308
(4, 6) 302
(5, 1) 278
(5, 2) 301
(5, 3) 261
(5, 4) 254
(5, 5) 285
(5, 6) 278
(6, 1) 279
(6, 2) 269
(6, 3) 295
(6, 4) 301
(6, 5) 253
(6, 6) 283

(write code on next page)

5

def get_totals(rolld):
"""
rolld is a dictionary in which (a,b) tuples are
the keys, the corresponding value is the number of times
(a,b) was rolled in a dice simulation. Return dictionary
in which keys are unique values of a+b for (a,b) in
rolld and value is number of times sum a+b occurs for
each key
"""

1. d = {}
for roll in rolld:

s = sum(roll)
if s not in d:

d[s] = 0
d[s] += rolld[roll]

return d

2. d = {}
info = [[key,rolld[key]] for key in rolld]
nlist = [[r[0][0] + r[0][1], r[1]] for r in info]
for sub in nlist:

d[sub[0]] = d.get(sub[0],0) + sub[1]
return d

3. d = {}
for tup in d.items():

s = sum(tup[0])
tot = tup[1]
if s not in d:

d[s] = tot
else:

d[s] += tot
return d

4. diction = {}
for n in range(2,13):

count = sum([rolld[key] for key in rolld if key[0]+key[1] == n])
diction[n] = count

return diction

5. d = {}
for dat in rolld.items():

r = sum(dat[0])
d[r] = d.get(r,0) + dat[1]

return d

6

PROBLEM 3 : (Follow the Money (18 points))

A list of political contributions in 2010 is stored in a Python list of tuples named contribs where each tuple
stores four values: a string, the politician’s name; a two-letter string, a US State abbreviation; an integer,
the total of all donations to the politician; and a single letter ’R’, ’D’, or ’I’ for Republican, Democrat, or
Independent, respectively.

For example, the second line below shows that Barbara Boxer from CA (California) received $20,314,189 in
donations and she is a Democrat.

contribs = [
("Jeff Greene","FL",23807119,"D")
("Barbara Boxer","CA",20314189,"D")
("Charles E Schumer","NY",17302006,"D")
("Harry Reid","NV",17213358,"D")
("Kirsten Elizabeth Gillibrand","NY",12900217,"D")
("Joseph A Sestak Jr","PA",11842844,"D")
("Linda Mcmahon","CT",46682270,"R")
("Sharron E Angle","NV",21470516,"R")
("John S Mccain","AZ",20077490,"R")
("Marco Rubio","FL",18251722,"R")
("Carly Fiorina","CA",17935605,"R")
("Scott P Brown","MA",17527893,"R")

]

As an example, to find the total of all contributions to all politicians we could use this Python expression:

total = sum([c[2] for c in contribs])

Part A (4 points)

Write a Python expression or code to store in variable rtotal the total of all donations for all politicians
who are Republicans.

Nothing to analyze

Part B (4 points)

Write a Python expression or code that creates a list of strings: the names of all politicians who have received
more than $15 million in donations, store this list in variable heavies.

Nothing to analyze

7

Part C (10 points)

For this part of the problem new data is provided in addition to the list contribs in the previous parts.

Each of the politician’s for whom data is found in the list contribs is the key in a dictionary donors whose
value is a list of tuples, the tuples giving the contributions for each donor to that politician. For example,
for Senator Rob Portman of Ohio part of his dictionary entry is shown below:

"Rob Portman" : [("L. Abbott", "4/22/10", 1900), ("V. Alpaugh", "12/29/09", 1000), ...
("C. Klein", "11/23/10", 500)]

The tuples in the list of donors have three values: the name of the donor, the date of the donation, and the
amount of money donated. In the data shown above, C. Klein gave $500.00 (to Rob Portman) on November
23, 2010 ("11/23/10").

Write the function small_donors that returns a list of two-tuples. The first element of each two-tuple is
the name of a politician that is in the list contribs (the first element of the tuples in list contribs, see
previous page) the second element in the two-tuple is an integer, the number of small donors, those who
gave less than $1000 to the candidate. For example, the list returned might look like this depending on the
data passed to small_donors:

[("Rob Portman", 52), ("Carly Fiorina", 107), ... ("Barbara Boxer", 972)]

The tuples in the list can be in any order. Every politician in contribs is a key in donors.

def small_donors(contribs, donors):
"""
contribs is a list described earlier containing 4-tuples,
in which first element is politician’s name

donors is a dictionary: key is politician’s name and value
is list of 3-tuples as above (name,date,money)

return list of 2-tuples (politician’s name, #small donors)
"""

1. ret = []
names = [p[0] for p in contribs]
for name in names:

s = 0
for datum in donors[name]:

if datum[2] < 1000:
s += 1

ret.append((name,s))
return ret

2. d = {}
for can,nations in donors.items():

smalls = [x for x in nations if x[2] < 1000]
d[can] = len(smalls)

return d.items()

8

