
Compsci 6 Test 2 Spring 2007

PROBLEM 1 : (Loop de loop: (10 pts))

Assume an ArrayList named values contains the following numbers:

5 8 1 4 3 10 2

PART A (5 pts):

Assume item has been declared an integer and assigned a value.

int count = 0;

for (int k=0; k<values.size(); k++)

{

if (values.get(k) < item)

{

count++;

}

}

a. If item is 7, what is the value of count when the loop ends?

b. Give a meaningful loop invariant for this code.

PART B (5 pts):

For the same ArrayList above, consider the following code.

for (int k=1; k < values.size(); k++)

{

values.set(k, values.get(k-1) + values.get(k));

}

a. List the elements in the ArrayList values after the code executes.

b. Give a meaningful loop invariant for this code.

PROBLEM 2 : (Rotate Prof. Rodger (10 pts))

Write the execute method of Rotate whose header is given below. This method takes a
color Pixmap image and a number (typed in a dialog box) and rotates the picture that many
pixels to the right (wrapping around). NOTE: The variable x change is the rotate amount.

For example, in the figure below, a color picture is shown on the left and the same image is
shown on the right after the Rotate method has been pressed and 150 has been entered.

1

public class Rotate extends Command

{

// code not shown that is not needed

public void execute (Pixmap target)

{

// code not shown that is not needed

int x_change = scale.width; // amount to rotate

Dimension bounds = target.getSize(); // size of pixmap

Pixmap copy = new Pixmap(target); // Keep a copy to Rotate

// TODO: complete method below

}

}

PROBLEM 3 : (Take Me Out to the Ballgame (36 pts))

Consider the following abstract Team class for a sports team.

public abstract class Team {

private String myCoach; // name of coach

private int myNumGames; // number of games to play for season

private int myNumWins; // number of wins

private ArrayList<String> myStarters; // list of players to start

public Team(String coach, int numGames) // constructor

{

myCoach = coach;

myNumGames = numGames;

myNumWins = 0;

myStarters = new ArrayList<String>();

}

// Plays a game and returns true if win, returns false if lose

2

public abstract boolean PlayGame();

// selects starting player names and puts them in myStarters

public abstract void CreateStartingLineup();

// returns name of coach

public String getCoach() { } // code not shown

// sets name of coach

public void setCoach(String coach) { } // code not shown

// returns total number of games to play

public int getNumGames() { } // code not shown

// sets number of games to play

public void setNumGames(int number) { } // code not shown

// adds one more win to win total

public void AddWin()

{

myNumWins++;

}

// returns number of wins

public int getNumWins() { } // code not shown

// add a player to the starting lineup

public void AddPlayerStartingLineup(String name) { } \\ code not shown

// clear out the starting lineup

public void ClearStartingLineup()

{

myStarters.clear(); // emptys ArrayList

}

}

PART A (20 pts):

1. Name the method(s) that must be created by a subclass.

2. Name the method(s) that are accessor methods

3. Name the state variables for the class

3

4. Fill in the code for the following methods from the Team class.

// returns name of coach

public String getCoach()

{

}

// sets name of coach

public void setCoach(String coach)

{

}

// returns total number of games to play

public int getNumGames()

{

}

// sets number of games to play

public void setNumGames(int number)

{

}

// returns number of wins

public int getNumWins()

{

}

// add a player to the starting lineup

public void AddPlayerStartingLineup(String name)

{

}

PART B (30 pts):

4

We would now like to create the class BaseballTeam, which uses the class BaseballPlayer.

public class BaseballPlayer {

private String myName; // name of player

private String myPosition; // position to play

private double myBatAverage; // batting average

public BaseballPlayer(String name, String position, double average)

{

myName = name;

myPosition = position;

myBatAverage = average;

}

// returns name of player

public String getName() { } // code not shown

// returns position for player to play

public String getPosition() { } // code not shown

// returns batting average for player

public double getBattingAverage() { } // code not shown

}

public class BaseballTeam extends Team {

private ArrayList<BaseballPlayer> myPlayers; // players on the team

// constructor

public BaseballTeam(Scanner input) { } // code not shown

// play one game and return true if this team wins, false otherwise

public boolean PlayGame() { } // code not shown

// create a starting lineup

public void CreateStartingLineup() { } // code not shown

// returns an ArrayList of all the players who play this position

public ArrayList<String> possiblePlayers(String position) { } // code not shown

// returns a set of all the possible positions on this team

public TreeSet<String> uniquePositions() { } // code not shown

}

PART B.1 (8 pts):

5

Complete the constructor for the BaseballTeam class. You should read from a file that has
the coaches name (one word), the number of games to play (an integer) and a list of players.
Each player has a name (one word), a position to play (one word) and a batting average
(double). You do not know how many players are on the team.

A sample file might be the following. Note in this example, Rodger is the coach, 16 is the
number of games to play and there are six players on the team.

Rodger 16

Todisco pitcher 0.250

Stecher firstbase .450

Stallworth pitcher .185

Hauptman catcher .380

Nicholson firstbase .410

Pavlova firstbase .317

Note the parameter input is of type Scanner and has already been connected to a file and is
ready for reading. You do not need to create a File or Scanner.

public BaseballTeam(Scanner input)

{

super("", 0); // must call constructor of super class first

// will need to reset these values after reading from input

}

PART B.2 (8 pts):

Complete the BaseballTeam method uniquePositions. This method should return a set of
all the unique positions the players on the team can play.

For example, using the previous data file, uniquePositions would return a set with three
positions: pitcher, firstbase, and catcher.

Complete uniquePositions below.

public TreeSet<String> uniquePositions()

{

}

PART B.3 (8 pts):

Complete the BaseballTeam method possiblePlayers. This method is given a type of
position to play and should return an ArrayList of all the players who can play this position.

6

For example, using the previous data file, possiblePlayers(”pitcher”) returns an ArrayList of
two names, Todisco and Stallworth.

Complete possiblePlayers below.

// returns an ArrayList of all the players who play this position

public ArrayList<String> possiblePlayers(String position)

{

}

PART B.4 (6 pts):

Complete the BaseballTeam method CreateStartingLineup. This method sets the starting
lineup by randomly selecting one player for each type of position. You must figure out where
to put the starting lineup, a hint is to look at the Team class again.

For example, using the previous data file, CreateStartingLineup() would set the starting
lineup randomly to be one of the two pitchers (maybe Stallworth), Hauptman (he is the only
catcher) and one of the three for firstbase (maybe Nicholson).

In writing CreateStartingLineup, you should call both uniquePositions and
possiblePlayers that you wrote previously. Assume they are correct, regardless of what
you wrote.

Complete CreateStartingLineup below.

// create a starting lineup

public void CreateStartingLineup()

{

}

PROBLEM 4 : (Who do you know? (10 pts))

Write the method friendsInClub whose header is given below. This method has two pa-
rameters, an ArrayList of type TreeSet (each set will be a TreeSet of type String) called clubs
and a String called name. This method returns the unique names of all the people who are
in a club with name.

For example, assume the sets in the ArrayList clubs are the following:

Set 1: Coon, Weiss, Pena

Set 2: Pena, Qian, Lawner

Set 3: Weiss, Pena, Lawner

Set 4: Belle, Garavito, Pena, Coon

Set 5: Bierbower, Cladek, Bencan, Pena

7

The call, friendsInClub(clubs, ‘‘Bencan’’) returns the set with Cladek, Pena and Bier-
bower (Note that Bencan is not returned), friendsInClub(clubs, ‘‘Weiss’’) returns the
set with Coon, Lawner, and Pena, and friendsInClub(clubs, "Pena") returns a set with
all the names above (since he is in every club) except Pena.

Complete the method friendsInClub below.

TreeSet<String> friendsInClub(ArrayList<TreeSet<String> > clubs, String name)

{

TreeSet<String> names = new TreeSet<String>(); // create set to return

// fill in code here

return names;

}

public class String
{

// Returns the length of this string.
public int length ()

// Returns a substring of this string that begins at the specified
// beginIndex and extends to the character at index endIndex - 1.
public String substring (int beginIndex, int endIndex)

// Returns a substring of this string that begins at the specified
// beginIndex and extends to the end of the string.
public String substring (int beginIndex)

// Returns position of the first occurrence of str, returns -1 if not found
public int indexOf (String str)

// Returns the position of the first occurrence of str after index start
// returns -1 if str is not found
public int indexOf (String str, int start)

// returns character at position index
public char charAt(int index)

// returns true if str has the exact same characters in the same order
public boolean equals(String str)

// returns the string as an array of characters
public char [] toCharArray()

}

public class Pixmap

8

{
// create a new Pixmap
public Pixmap(int width, int height)

// returns true if (x,y) is in the bounds of the Pixmap
public boolean isInBounds(int x, int y)

// return the Dimension of the pixmap, Dimension has a width and height
public Dimension getSize ()

// returns the Color of the pixel at (x,y)
public Color getColor (int x, int y)

// sets the Color of the pixel at (x,y)
public void setColor (int x, int y, Color value)

}

public class Color
{

// create a Color with each of r, g, b in the range from 0 to 255
public Color(int r, int g, int b)

// returns the blue color (0 to 255 value), similar methods for red and green
public int getBlue()

}

public class Dimension
{

// returns height of Dimension
public int getHeight()

// returns width of Dimension
public int getWidth()

}

public class ArrayList
{

// Constructs an empty list
public ArrayList ()

// Returns the number of elements in this list.
public int size ()

// Returns element at index in this list.
public Object get (int index)

// Replaces the element at the specified position

9

// in this list with the specified element.
public Object set (int index, Object element)

// Appends specified element to end of this list.
public boolean add (Object o)

}

public class File
{

// Open a new file from the given pathname
public File (String pathname);

}

public class Scanner
{

// Create Scanner that reads data from a file.
public Scanner (File file)

// Create Scanner that reads data from a string.
public Scanner (String str)

// Change delimiters used to separate items
public void useDelimiter (String characters)

// Check if more items are available
public boolean hasNext ()

// Get next delimited item as a string
public String next ()

// Get next line as a string
public String nextLine ()

// Get next delimited item as an integer value
public int nextInt ()

// Get next delimited item as a Double value
public int nextDouble ()

}

public class TreeSet
{

// creates an empty TreeSet
public TreeSet()

// adds object e to the TreeSet

10

boolean add(Object e)

// removes all objects from the TreeSet
void clear()

// returns true if e is in the set, othewise returns false
boolean contains(Object e)

// returns true if set is empty, otherwise returns false
boolean isempty()

// returns an Iterator for the set
Iterator<Object> iterator()

// removes the object e from the set
boolean remove(Object e)

// returns the number of elements in the set
int size()

}

public class Random
{

// constructor
public Random ()

// returns random number from 0 (inclusive) to n (exclusive) (does not
// include n)
public int nextInt(n)

}

11

