
Test 2: CompSci 6

75 Minute Exam

March 4, 2009

Name (print):

Honor Acknowledgment (signature):

DO NOT SPEND MORE THAN 10 MINUTES ON ANY OF THE QUESTIONS! If you do not
see the solution to a problem right away, move on to another problem and come back to it later.

Before starting, make sure your test contains 13 pages. The last page is blank and can be used as
scratch paper, but all pages must be turned in.

None of the Java programs or program segments should have syntax errors unless stated. If you
think there is a syntax error or you do not understand what a question is asking, then please ask.
Import statements may not always be shown.

Do not discuss this test with anyone until the test is handed back.

value grade
Problem 1 16 points

Problem 2 24 points

Problem 3 20 points

TOTAL: 50 points

1

PROBLEM 1 : (Cutting through the confusion: (16 points))

Many web pages embed parameters to their web pages within the page’s URL (Uniform Resource
Locator). This is often done with scripted pages such as you would find at online stores. This
information appears after the web page’s name and is encoded such that each piece is separated
from other pieces by an ampersand, &. A piece is made up of an id and a value which are separated
by an equal sign, =.

Several examples are given below. The first line below has three pieces. The first piece has the id
name and the value harry, the middle piece has the id type and the value wizard, and the last (or
third) piece has the id diet and the value potions.

"name=harry&type=wizard&diet=potions"
"name=ethan&year=1999&month=june&color=pink",
"name=robert&animal=tiger",
"name=penny&type=penguin&zoo=asheboro",
"name=denny&type=duke&weight=120",

Part A: (5 points)

Write a method pieceCount that returns the number of pieces in a URL.

For example the code below sets x to 1 and y to 5.

int x = pieceCount("name=marco");
int y = pieceCount("name=moe&type=zebra&weight=360&height=71&zoo=bronx");

Complete the method, pieceCount, below.

/**
* Return the number of pieces (as defined above) in url
*/

public int pieceCount (String url)
{

}

2

Part B: (5 points)

Write a method getNthPiece that returns just the specified piece from the given URL.

For example, the code below sets first to ”name=moe” and last to ”zoo=bronx”

string zoostuff = "name=moe&type=zebra&weight=360&height=71&zoo=bronx";
string first = getNthPiece(zoostuff, 1);
string last = getNthPiece(zoostuff, 5);

Complete the method, getNthPiece, below.

/**
* Return the n-th piece of url (where n is guaranteed to be
* between 1 and pieceCount(url), inclusive).
*/

public String getNthPiece (String url, int n)
{

}

3

Part C: (6 points)

Write a method splitURL that splits a given URL into two parallel lists, one containing the ids
and one the values.

For example, the following URL would fill the list ids with the strings “name”, “year”, “month”,
and “color” and the list values with the strings “ethan”, “1999”, “june”, and “pink” respectively.
In this way, the second element of the list ids corresponds to the second element of the list values

"name=ethan&year=1999&month=june&color=pink"

You will not receive full credit for this part unless you call the methods pieceCount and getNthPiece
that you wrote previously and use their results in determining the result of this function. Assume
each works as specified regardless of what you wrote.

Complete the method, splitURL, below.

/**
* Splits each piece of given url such that ids contains all
* of the id fields in url and values contains all of the
* value fields in url. You may assume that both lists are
* non-null and simply add the pieces to the end of each list.
*/

public void splitURL (String url, List<String> ids, List<String> values)
{

}

4

PROBLEM 2 : (Above average?: (24 pts))

Consider the following super-class declaration used for this problem.

/**
* A Shape represents a generic geometric shape that fits within a rectangle.
*/
public class Shape
{

private double myWidth, myHeight; // dimensions

public Shape (double width, double height) {
myWidth = width;
myHeight = height;

}

// returns specific dimension asked for
protected double getWidth () {

return myWidth;
}

protected double getHeight () {
return myHeight;

}

// returns area of the geometric shape
public double area () {

return 0;
}

}

Part A: (6 points)

Briefly explain the meaning of Java’s visibility keywords: public, protected, and private? Use examples
from the Shape class to illustrate your explanantions.

5

Part B: (6 points)

The class Circle below extends Shape and overrides the area method to return the area for only a circle
shape. However, given the implementation below, there are two problems with the area method as written:
one is a compilation error and the other a logic error.

/**
* A Circle represents a geometric circle.
*/
public class Circle extends Shape
{

private double myWidth;

public Circle (double diameter)
{

super(diameter, diameter);
}

// returns area of circle
public double area ()
{

return Math.PI * (myWidth / 2) * (myHeight / 2);
}

}

Below, explain the reason for each error and then modify the code above to fix each one.

6

Part C: (6 points)

Write the class Rectangle that extends Shape and overrides the area method to return its width ∗ height.
You should provide only those constructors and methods that are required in order for the class to compile.

7

Part D: (6 points)

Complete the method, averageArea, that returns the average area of a collection of objects that all extend
Shape. If the given collection is empty, i.e., its size is 0, then the method should return 0.

Complete the method averageArea below:

/**
* @return the average of the areas of all shapes in the list shapes,
* or 0 if the list is empty
*/
public double averageArea (ArrayList shapes)
{

}

8

PROBLEM 3 : (Working Together (20 pts))

Assume that every player on a team is modelled using the class Player declared as shown below.

public class Player
{

private String myName;
private ArrayList<Integer> myMinutes; // minutes played in each game

public Player (String name, ArrayList<Integer> minutes)
{

myName = name;
myMinutes = minutes;

}

public String getName ()
{

return myName;
}

public int getMinutesForGame (int whichGame)
{

// assume 0 <= whichGame < myMinutes.size()
return myMinutes.get(whichGame).intValue();

}

public int getNumberGamesPlayed ()
{

return myMinutes.size();
}

}

9

Part A (10 points)

Write the function readTeam below that reads data from a file and stores it in an initially empty list of
Player’s. Assume that the text file with team information being read is in the format shown below. There
are two lines for each player in the team. The first line contains first and last name, and the second line
contains a list of the number of minutes played in each game during the season. Note that the number of
games played varies from player to player.

A sample data file is shown below with the first player with 4 games and the second play with 7 games:

Fred Smith
1 13 5 1
Chris Jones
8 2 5 6 4 7 16

Complete readTeam below.

/**
* Reads all player information from the file represented by
* the parameter Scanner and returns it in a list
*/
public ArrayList<Player> readTeam (Scanner input)
{

}

10

Part B (4 points)

Write the function totalNumberOfMinutes below that, given a Player, returns the total number of minutes
that player played during the season.

Given the example players in the previous part, your function should return the value 20 minutes when
called with the Player object representing Fred Smith and 48 minutes when called with the Player object
representing Chris Jones.

Complete totalNumberOfMinutes below. Note, this method is not part of the Player class and so does not
have access to its private instance variables.

/**
* Return the sum of all the minutes player played.
*/
public int totalNumberOfMinutes (Player player)
{

}

11

Part C (6 points)

Write the function mostMinutes below that, given a list of players representing a team, returns the name of
the Player who has played the most total minutes during the season.

Given the example team from the previous parts, your function should return the name “Chris Jones”
because he played for 48 total minutes, while his only other team member played for only 20 minutes.

You will not receive full credit for this part unless you call the function totalNumberOfMinutes that
you wrote in Part B at least once and use its result in determining the result of this function. Assume
totalNumberOfMinutes works as specified regardless of what you wrote in Part B.

Complete mostMinutes below.

/**
* Return the player that has played the most minutes regardless
* of the number of games played.
*/
public String mostMinutes (ArrayList<Player> team)
{

}

12

Throughout this test, assume that the following classes and methods are available. These classes are taken
directly from the material used in class. There should be no methods you have never seen before here.
Point

public class Point {

// coordinates

public int x;

public int y;

// Constructs and initializes a point at the

// specified (x,y) location.

public Point (int x, int y)

// Returns distance from this point to given one

public int distance (Point other)

// Adds dx and dy to this point’s coordinates

public void translate (int dx, int dy)

}

Math

public class Math {

// Returns the greater of the two given values

public int max (int a, int b)

// Returns the lesser of the two given values

public int min (int a, int b)

}

ArrayList

public class ArrayList<Item> {

// Constructs an empty list

public ArrayList ()

// Returns the number of items in this list.

public int size ()

// Searches for the first occurence of the given

// item, returns -1 if not found

public int indexOf (Item i)

// Returns item at index in this list.

public Object get (int index)

// Appends given item to end of this list

public boolean add (Item i)

}

// To create an ArrayList of String objects:

ArrayList<String> things = new ArrayList<String>();

String

public class String {

// Returns string’s length

int length ()

// Returns true if the given string contains

// the exact same characters as this string

public boolean equals (String other)

// Returns true if the given string contains

// the same characters as this string regardless

// of whether they are upper- or lower-case

public boolean equalsIgnoreCase (String other)

// Returns a substring of this string that

// begins at the given beginIndex and extends

// to the character at index endIndex - 1

String substring (int beginIndex, int endIndex)

// Returns a substring of this string that

// begins at the given beginIndex and extends

// to the end of the string

String substring (int beginIndex)

// Returns position of the first occurrence

// of str, -1 if not found

int indexOf (String str)

// Returns position of the first occurrence

// of str after index start, -1 if not found

int indexOf (String str, int start)

// returns true if this string starts with

// the characters in str

boolean startsWith (String str)

// returns true if this string ends with

// the characters in str

boolean endsWith (String str)

}

Random

public class Random {

// Creates a new random number generator.

public Random ()

// Returns pseudorandom, uniformly distributed,

// int value between 0 (inclusive) and the

// specified value (exclusive)

public int nextInt (int n)

}

Scanner

public class Scanner {

// Create Scanner for that reads data from a string.

13

public Scanner (String str)

// Use the given pattern to delimit items when scanning

public void useDelimiter (String pattern)

// Check if more items are available

public boolean hasNext ()

// Get next delimited item as a string

public String next ()

// Get next delimited item as an integer value

public int nextInt ()

}

// typically used in a while loop:

Scanner input = new Scanner("a b c");

while (input.hasNext())

{

String letter = input.next();

// do something with letter

}

14

