
The Scope of Open Source Licensing

Josh Lerner

Harvard University and NBER

Jean Tirole

University of Toulouse and MIT

This article is an initial exploration of the determinants of open source license

choice. It first highlights how the decision is shaped not just by the preferences

of the licensor itself, but also by that of the community of developers. The article

then presents an empirical analysis of the determinants of license choice using

the SourceForge database, a compilation of nearly 40,000 open source proj-

ects. Projects geared toward end-users tend to have restrictive licenses, while

those oriented toward developers are less likely to do so. Projects that are

designed to run on commercial operating systems and whose primary language

is English are less likely to have restrictive licenses. Projects that are likely to be

attractive to consumers—such as games—and software developed in a corpo-

rate setting are more likely to have restrictive licenses. Projects with unrestricted

licenses attract more contributors. These findings are broadly consistent with

theoretical predictions.

1. Introduction

An extensive body of work has examined the economics of technology licens-

ing. In particular, theoretical studies have intensely scrutinized several aspects

of how profit-maximizing firms should license their intellectual property, in-

cluding the timing of the licensing transaction (i.e., whether before or after the

discovery has been made), whether exclusive licenses should be employed,

We thank Larry Augustin, Jeff Bates, and Pat McGovern for access to the SourceForge

database. Comments by Ian Ayers (the editor), Yochai Benkler, Keith Bostic, Judy Chevalier,

Peter Childers, Jacques Crémer, David Genesove, Brian Kahin, Marten Miklos, Siobhan

O�Mahony, Bruce Perens, Bernie Reddy, Larry Rosen, Marcin Strojwas, two anonymous ref-

erees, and participants at the conference ‘‘Open Source Software: Economics, Law and Policy’’

at the University of Toulouse, the American Economics Association meetings, and a seminar at

Harvard Law School were very helpful. We thank James Hunter, Nicolas Lambert, Bernie

Reddy, and Brendan Reddy for their many contributions to the research project. Harvard Busi-

ness School’s Division of Research provided financial assistance. The Institut D�Economie

Industrielle receives research grants from a number of corporate sponsors, including France

Telecom and Microsoft Corporation. All errors are our own.

The Journal of Law, Economics, & Organization, Vol. 21, No. 1,

doi:10.1093/jleo/ewi002

� The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions,

please email: journals.permissions@oupjournals.org

20 JLEO, V21 N1

and the nature of the fees that should be charged (e.g., the trade-off between

royalties and flat fees).1

But the question of the optimal scope of technology licenses has been much

less thoroughly scrutinized. More concretely, should the licensee be free to use

the technology as he sees fit, being able to commercialize follow-on inven-

tions, or should his use be narrowly circumscribed? This article examines this

question in a special context: the licensing of open source software.

The open source process—a method of software development in which con-

tributors freely submit code to a project leader, who in turn makes the im-

proved code widely available—is an interesting arena to start thinking

about license scope because the standard considerations (e.g., timing, exclu-

sivity, fee structure) are irrelevant. Users of open source software must typ-

ically consent to a licensing arrangement, which may impose a variety of

restrictions. For instance, the user may be limited in his ability to distribute

a modified version of the program as a proprietary commercial product without

releasing the underlying source code.2

This article first explores the various considerations that figure into the

licensor’s decision of how restrictive a license to employ. It highlights the

complex set of motivations that may drive the choice of license. It then sug-

gests that permissive licenses will be more common in cases where projects

have strong appeal to the community of open source contributors—for in-

stance, when contributors stand to benefit considerably from signaling incen-

tives or when the licensors are well trusted—and restrictive ones

commonplace when the appeal is more fragile.

The article then presents an empirical analysis of the prevalence of different

types of open source licenses. The analysis employs the SourceForge database,

a compilation of nearly 40,000 open source projects that has hitherto been

largely unexplored by academics. We focus on two critical characteristics

of these licenses:

� Whether the license requires that when modified versions of the program

are distributed, the source code must be made generally available. Such

a provision is sometimes referred to as a ‘‘copyleft’’ provision. In the em-

pirical analysis in this article, we term such licenses as ‘‘restrictive.’’

� Whether the license restricts modified versions of the program from min-

gling their source code with other software that does not employ such

a license. Such a clause is sometimes termed a ‘‘reciprocal’’ or a ‘‘viral’’

provision. For purposes of the empirical analysis in this article, we term

this a ‘‘highly restrictive’’ requirement.

1. Katz and Shapiro (1986) and Gallini andWright (1990) are illustrative of this literature. Also

relevant are those works that explore the real consequences of the licensing decision, whether the

impact of this choice on subsequent innovations by the original innovator (Gandal and Rockett,

1995), the decision of rivals to enter the market (Gallini, 1984; Rockett, 1990), or the nature of the

competitive dynamics in the industry (Shepard, 1987).

2. Of course, the fact that timing, royalty rates, and exclusivity are not important in this setting

means that our ability to draw lessons for the commercial world may be limited.

The Scope of Open Source Licensing 21

These licenses, it should be acknowledged, are complex legal documents

that have not yet been tested in court.3 Significant ambiguities remain about

their interpretation. What is critical for our analysis, however, is the relative

ordering of the restrictiveness of the agreements, not their absolute restrictive-

ness. We will consider three classes of licenses: unrestrictive [e.g., the Ber-

keley Software Definition (BSD) license], restrictive [e.g., lesser general

public license (LGPL)], and highly restrictive [general public license

(GPL)]. (See below for a more complete discussion of these licenses.)

The results are largely consistent with the framework above: more restric-

tive licenses are more common in projects geared toward end users, with appli-

cations such as games and desktop applications, in languages other than

English, and designed for a noncommercial user environment or operating sys-

tem. We explore the robustness of the results to the use of a variety of def-

initions of the independent variables, as well as to using only the earliest and

latest projects added to the SourceForge database. In an exploratory analysis

using a much smaller sample, we examine the licensing terms of projects that

are spun out of corporations. The results generally correspond with theoretical

suggestions. Finally, we show that, consistent with theory, community contri-

butions are greater when restrictive licenses are employed.

2. The Legal Foundations of Open Source Licensing

Software developers have long been able to obtain copyright protection for their

works. When for-profit companies manufacture proprietary software products,

these copyrightedworks are typically licensed rather than sold. By licensing the

software, softwaremanufacturers can limit their liability if the product does not

work effectively and restrict the rights that the users would normally have

(e.g., the ability to simultaneously run the software on several computers).

[For a detailed rationale for this approach, see Neukom and Gomulkiewicz

(1993).]

In the early days of the computer software industry, however, much of the

software was made available without an explicit license governing its use.4

[For a history of the open source movement, see Lerner and Tirole (2002)

and the references cited therein.] By the early 1980s, programmers had become

disturbed by instances of behavior that they deemed to be unethical.5

In response to these events, MIT programmer Richard Stallman developed

a new approach to distributing software in the mid-1980s. Rather than dedicat-

ing the software to the public domain, he required users to license the code under

3. One decision that touched on, but did not resolve, these questions was Progress Software

Corp. v. MySQL AB, 195 F.Supp.2d 328 (D. Mass 2002).

4. Subsequently software was also made available under formal contracts between developers

and users. Later (in the personal computer era), software was protected through mass-market

‘‘shrink-wrap’’ licenses.

5. In some instances, firms had solicited contributions from third parties and then sought to

enforce intellectual property rights on the software that resulted. In other cases, individuals added

a modest amount of new code to software that was distributed without restrictions, which they then

sold as a copyrighted proprietary product.

22 The Journal of Law, Economics, & Organization, V21 N1

the GNU public license.6 This license essentially required that the program’s

source code (the underlying programming commands) be freely available

and that modifications to the code must be allowed. One of Stallman’s major

concerns, however, related to thosewho sought to commercializemodifications

to the code. He limited the ability of software developers to undertake such ac-

tivities in two critical ways: by ensuring that any derivative works remain sub-

ject to the same license and by prohibiting themixing of open and closed source

software in any distributed works. In this way, he limited the danger of com-

mercial exploitation of these discoveries. A variant of the GPL, known as the

lesser GPL (LGPL) allows greater flexibility in regard to the ‘‘mixing’’ require-

ment: in particular, programs are allowed to link with (or employ) other pro-

grams or routines that are not themselves available under an open source

license. In other respects, though, the LGPL is similar to the GPL.

Meanwhile, several alternative licenses were introduced:

� Perl, a UNIX-based programming language that allows for the automa-

tion of many system administration tasks, was originally made available

by its founder, LarryWall, under the GPL. He soon decided that the terms

were too restrictive and developed what was termed the ‘‘artistic license.’’

With a few limitations, users were free to develop commercial products

based on the Perl code. Nor were any limitations placed on the mingling

of proprietary and open source code.

� Another variant was the family of BSD-type licenses, which also allowed

a great deal of flexibility to users, as long as credit was given to the Uni-

versity of California for the underlying code in the documentation of any

derivative version.7 BSD-type licenses, which have been adopted by

many projects (including the Apache Web server), are today the most

popular alternative license to the GPL and LGPL.

� Another family of alternative licenses is those introduced by commercial

companies that have ‘‘opened up’’ some of the proprietary code (i.e.,

made the source code available to open source programmers). These pro-

grams have frequently added specialized provisions to address copyright

and liability concerns of the corporate parent.

In 1998 a variety of open source leaders came together to establish a con-

sistent set of criteria for what constituted an open source license, which they

termed the ‘‘open source definition.’’ Among the requirements for the license

of a program to be considered ‘‘open source’’ were that

� The source code for the program must be available at little or no charge.

� Redistribution of the program, in source code or other form, must be

allowed without a fee.

6. GNU was the name of the project to develop a new operating system that Stallman had

launched. The license was later renamed the general public license. For a detailed history, see

http://www.free-soft.org/gpl_history/ (accessed September 17, 2002).

7. The credit provision was dropped in later versions of the license.

The Scope of Open Source Licensing 23

http://www.free-soft.org/gpl_history/

� Distributionsofmodifiedsoftwaremustbeallowedwithoutdiscrimination.

� The distributions of those modifications on the same terms as the original

program must be permitted.

This definition was broad enough to both encompass the GPL and those

licenses that allow users greater liberty in how they use the code.8

Table 1 summarizes the leading open source licenses. For each license that has

been approved as falling under the ‘‘open source definition’’ (as well as two other

broadclassesofrelatedlicenses),wereport,asdiscussedintheintroduction,whether

the license has what we term ‘‘restrictive’’ and ‘‘highly restrictive’’ features.9

Despite uncertainties surrounding the enforceability of open source

licenses,10 it is clear that software developers care critically about the choice

of license used. Decisions to switch between license types11—for instance, the

WINE project’s recent move from the BSD-like X11 license to the LGPL

license12—have proven intensely controversial.

3. The Choice of License: A Simple Model

We begin with a highly stylized model of license choice, which we hope will

capture the key rationales behind the choice of license.13 Suppose that an entity,

8. For detailed analyses of the open source definition, see Lee (1999) and Perens (1999).

9. In some cases, those who redistribute the original code must make it freely available,

butmodificationsneednotbe (e.g., the artistic license).Thesecases are codedasnot being restrictive.

10. The extent to which these licenses can be enforced remains untested in a court of law. These

issues are discussed, for instance, in Dodd and Martin (2000) and McGowan (2001).

11. The alteration of open source licenses by project leaders poses several interesting issues.

Open source licenses differ somewhat from traditional licenses, such as the ‘‘shrink-wrap’’ agree-

ments that govern the relationship between manufacturers and users of commercial software prod-

ucts, which require the consent of both parties to be effective. Rather, an open source license is best

seen as a conditioned permission to use one’s property, akin to a landowner who allows hikers to

use a path that passes through his property. The project leaders can unilaterally change such per-

missions, just as the landowner can fence his property without consulting the hikers (or conversely,

add to the network of trails). Thus the leaders of a BSD license project would be free to switch to

a GPL, and vice versa. Two complications, however, should be noted. First, it is unlikely that open

source project leaders can force existing licensees to honor alterations to the terms of licenses.

Thus, if a program had been made available under a BSD license and a firm has incorporated

the code into a commercial product, the project leaders in all probability cannot subsequently force

the firm to make the product available under the GPL. A second complication is introduced by

projects where contributors do not assign the copyright for their holdings to a central entity (as the

Free Software Foundation andmany other sponsors of open source projects require). In these cases,

such as the Linux kernel development project, the copyright is in the hands of literally thousands of

individual contributors. Any change to the license would probably require the assent of each copy-

right holder: any holdout could block the shift, unless his software contribution could be rewritten.

12. See, for instance,http://kt.zork.net/wine/wn20020308_117.html(accessedSeptember17,2002).

13. In this section we take an optimizing approach. To be sure, the choice of a license may be

affected by considerations that either lie outside the standard utility-maximizing paradigms, or may

be distorted by a misunderstanding of the implications of the alternative licenses in the choice set.

An example of the former is the influence of ideological views: to cite one example, the belief that

‘‘software should be free’’ is sometimes invoked in favor of the GPL. This belief could conceivably

be rationalized through its adherents’ confidence that future versions of the software will remain

communal property. For some adherents, though, this belief is simply a matter of principle.

24 The Journal of Law, Economics, & Organization, V21 N1

http://kt.zork.net/wine/wn20020308_117.html

Table 1. Open Source Software Licenses

License name Restrictive?

Highly

restrictive?

Observations

in sample

Observations

with activity

data

OSI approved licenses

Apache Software L N N 301 121

Apple Public Source L 1.2 Y N 15 3

Artistic L N N 736 223

BSD L N N 1,708 618

Common PL Y N 34 18

Eiffel Forum L Y N 5 3

General PL Y Y 18,133 5801

IBM PL 1.0 Y N 33 7

Intel OSL N N 10 6

Jabber OSL Y N 20 7

Lesser General PL Y N 2,501 1047

MIT L N N 395 151

MITRE Collaborative Virtual

Workspace La
Y Y/N 5 1

Motosoto L Y N 0 0

Mozilla PL 1.0 Y N 229 76

Mozilla PL 1.1 Y N 134 62

Nethack PL Y N 16 6

Nokia OSL Y N 5 2

Open Group Test Suite L N N 1 0

Python (CNRI) L N N 162 53

Python Software Foundation L N N 0 0

Qt PL Y N 136 39

Ricoh Source Code L Y N 5 3

Sleepycat L Y N 5 2

Sun Industry Standards

Source Lb
N N 26 9

Sun PL Y N 0 0

University of Illinois/NCSA

OSL

N N 1 1

Vovida Software L 1.0 N N 1 0

W3C L N N 0 0

X.Net L N N 0 0

Zope PL 2.0 N N 125 47

zlib/libpng L N N 0 0

Other/proprietary ? ? 531 220

Public domain N N 820 244

The table summarizes all open source initiative-approved licenses, as well as selected others. The final two columns

indicate the number of observations of each license type in the SourceForge database.

Definitions: Restrictive: Y implies that the source code from modifications to the program must be made available.

Highly restrictive: Y implies that the program cannot be compiled with proprietary programs.

L, license; OS, open Source; PL, public license.
aLicensees can choose between two possible options.
bDeviations from certain industry standards, however, must be documented.

The Scope of Open Source Licensing 25

whomwewill termthe‘‘licensor,’’ isdeciding(a)whether tomakesomesoftware

available under an open source license and (b), if so, what type of license to em-

ploy. The licensormay be a single developer, a group of developers with similar

needs, or a corporation. We depict the interactions between the licensor and the

community of programmers who are asked to work on their project. The pro-

grammers’ benefits from working on the project may depend on the choice of

license. The licensor must assess how his mixture of motivations, together with

project characteristics—such as the environment, the nature of the project, and

the intended audience—impacts the project’s likely success.

Both the licensor and the open source community may derive commercial

and noncommercial benefits from the open source project:

� Noncommercial benefits encompass peer recognition, the career advance-

ment associated with involvement in an open source project, the pleasure

of solving open source programming problems, and the benefits of being

able to tailor the code to one’s own specific needs. (This latter benefit

exists only for the community, since the licensor will be able to do so

whether the project is taken open source or not.) These benefits are

denoted a þ c for the licensor, and a þ b þ c for the community.

Wedefineaasaknownexogenousparameter that indexes theattractivenessof

the project. The variable c is known and increases with the restrictiveness of the

license. Our rationale for the term c is that software made available under unre-

strictive licenses are particularly prone to ‘‘hijacking’’ by commercial software

vendors: in other words, the commercial firmmay add some proprietary code to

theopensourcesoftwareandtake thewholeprivate. (Theoriginalprojectwillnot

beprivatized, but there is a risk that the proprietary derivativeworkwill confuse,

and perhaps dominate, the market.) While such hijacking need not be socially

detrimental—itmay take theproject to its next logical stepor revive interest in an

otherwise faltering technology—the action deprives the open source contribu-

tors of some of the benefits from the project.14 This prospect may discourage

potential contributors in the first place.15 Although we do not require that the

community’s overall welfare increases with c, the interesting case is where it

does, as discussed below. Hence it may be useful to think of c as a ‘‘concession’’

14. For example, they may have to pay for the final software and be unable to tailor it for their

own needs. One reason for this fear is that contributors to open source projects enjoy dynamic

network effects—see Lerner and Tirole (2002)—and that these network effects may be reduced

by competition from a proprietary variant. This argument for restrictive licenses could be rephrased

to say that community members make project-specific investments. Hijacking poses the possibility

that the members may be ‘‘held up’’: for instance, they may lose the ability to shape the project to

meet their particular needs and their contributions become less visible because the open source

community loses interest in the project. Several covenants in the restrictive licenses (including that

about patent licensing discussed below) can be seen as a Williamsonian (1975, 1985) contractual

response to address the danger of such a ‘‘hold up’’ problem.

15. Another possibility that may discourage contributions would be forking, which refers to an

internal threat of competing groups moving in different directions and producing incompatible

versions of the same initial open source project.

26 The Journal of Law, Economics, & Organization, V21 N1

to theopensourcecommunity.Finally, tocapture theuncertaintythat thelicensor

faces regarding thecommunity’s enthusiasmregarding theproject,we introduce

a random parameter b. This community-specific parameter of attractiveness

reflects the community’s assessment of the prospects for the future development

of this project and the uncertainty surrounding this assessment. Known differ-

encesbetweenthelicensorandthecommunity(suchas thebenefitsfromtailoring

the code) can be subsumed in the distribution of b.

� Commercial incentives are driven by the money that can potentially be

made on products and services that are complementary to the open source

project. These can be new products and services that emerge concurrently

with thesuccessof theopensourceprogramand, foracorporate licensor, the

increased sales of existing complementary software products. (The firm

mayalsobenefit indirectly, suchas throughan increase in competitivepres-

sure on a rival’s proprietary software program that is competing with the

open source project.) Let p(c) denote this expected payoff. It is natural to
assume that p#(c)< 0: a more restrictive license reduces the opportunities

for making money on complementary products, and that p$ # 0.16

The licensor’s preferences regarding license restrictiveness, provided that

he opts for an open source license in the first place, are given by aþ cþ bp(c),
where b represents the weight that the licensor places on the commercial ben-

efits. As described below, we subsume the community’s intensity of partici-

pation in the project into the probability p(c) that the community actually is

willing to contribute to the project. Let Vdenote what the licensor could get by

keeping the project proprietary. The licensor chooses an open source approach

if and only if

max
fcg

pðcÞ½aþ cþ bpðcÞ� � V :

The alternative payoff, V , includes the payoffs on the project itself if it is kept

proprietary and, as in the case of the open source option, the potential profit

from the sale of complementary products and services. V is, of course, inde-

pendent of c. But as we will discuss further below, V may be positively cor-

related with a: a software program that is dominated by rival software may

have a low V , but is also likely to be unattractive to the open source commu-

nity, as the programmers will be reluctant to contribute to a project that is

unlikely to succeed. In other words, projects that lag behind other programs

will be more likely to be turned into open source projects, all else being equal,

but because of the uphill battle they face, may be not be embraced by the open

source community.

We now turn to the community’s preferences. Letting a denote the commun-

ity’s relative weight on the commercial benefits from the project, the commun-

ity’s return from participating in the project is a þ b þ c þ ap(c).

16. This condition will hold, for instance, if p is linear in c. The condition also ensures that the

maximand below is concave.

The Scope of Open Source Licensing 27

We make two sets of assumptions. First, the uncertain variable b, denoting

the project’s appeal to the community, is distributed with a cumulative distri-

bution F(b) and a density f (b) with wide support. This distribution, as is the

case with almost all familiar distributions, has a monotone hazard rate, that is,

f ðbÞ=ð1� FðbÞÞ is increasing in b. Second, we assume that the licensor puts at

least as much weight on commercial objectives (relative to noncommercial

ones) as the community: b � a: Our rationale is that commercial benefits

are likely to flow disproportionately to the project leaders: as Lerner and Tirole

(2002) document, there are numerous examples where project leaders have

parlayed participation in these projects into commercial opportunities. Note

that this assumption says nothing about absolute preferences. The leadership

and the community may both prefer the restrictive license or both prefer the

permissive license.

Let Udenote the reservation utility or the opportunity cost for the commun-

ity’s members to participate in the open source project. The community then

participates if and only if

aþ bþ cþ apðcÞ � U :

Thus the probability that the community embraces the open source project is

pðcÞ ¼ 1� FðU � ½aþ cþ apðcÞ�Þ:
Let us now consider the decision that the licensor faces. He chooses the open

source option if and only if

max
fcg

f½1� FðU � ðaþ cþ apðcÞÞÞ� ½aþ cþ bpðcÞ� g � V ;

where the maximization is over some interval [c;�c]. (c corresponds to the least
restrictive license, and �c to the most restrictive.) Suppose, first, that the com-

munity prefers an unrestrictive license: 1þ ap# c< 0. Because b� a, so does
the licensor a fortiori. In this case, c ¼ c, and the choice of license, being a cor-

ner solution, is locally independent of the parameters. We now turn to the more

interesting case in which 1 þ ap# > 0, where the community prefers a more

restrictive license. Let

â[aþ cþ apðcÞ; with @â
@c

2 ð0;1Þ

in the relevant range.

The identity defines a function, c(â), the degree of license restrictiveness

needed to reach an overall level of attractiveness â. Now define

p̂ðâÞ[ðb� aÞpðcðâÞÞ:

We can thus rewrite the licensor’s objective function as

V ¼ ½1� FðU � âÞ� ½âþ p̂ðâÞ�

with ðâþ p̂ðâÞÞ# ¼ ð1þ bp#Þ=ð1þ ap#Þ. In this setting, choosing the degree

of license restrictiveness c amounts to choosing â. Taking logarithms and dif-

ferentiating, we obtain

28 The Journal of Law, Economics, & Organization, V21 N1

@ðlogV Þ
@â

¼ f ðU � âÞ
1� FðU � âÞ

þ 1þ p̂#ðâÞ
âþ p̂ðâÞ :

If 1þ p̂# > 0, that is, if 1 þ bp# > 0, then the licensor prefers a restrictive

license, and so c ¼ �c. This corner solution is again locally invariant to changes
in the parameters.

We consider next the case of an interior solution, where

@ðlogV Þ
@â

¼ 0:

We first consider the comparative statics with respect to U . Differentiating the

expression yields

@2ðlogVÞ
@U@â

¼ f

1� F

� �#
> 0:

The overall attractiveness â, and hence the restrictiveness of the license, must

increase with the community’s outside opportunity U .

Because p̂ is weakly concave, we can derive an additional result. Differen-

tiating the first-order condition shows that

0 <
@â

@U
< 1:

This relationship implies that participation, as measured by the probability that

the community embraces the project, decreases as U increases.

Wecannowderivesomeadditional implications fromthisanalysis.Moregen-

erally, U can be seen as standing for the relative attractiveness of alternative

projects.17 Thus we can conclude that the license becomes less restrictive (c

decreases) and participation increases (1�F increases)when aproject becomes

more attractive to the community, keeping attractiveness for the licensor con-

stant. Formally this will hold when the distribution of b shifts. Let h represent a
knownshifteroftheproject’sattractivenesstothecommunityonly(e.g.,achange

in the ability to tailor the code). The distribution of b is F(b � h), such that

f (b�h)/[1�F(b�h)]decreaseswithh fromthemonotonehazard rateproperty.

A project that is more attractive to the community is one with a higher h.18

Examples include

� Projects where the community has more trust in the licensor, which may

be the case, for instance, where the licensor is an individual rather than

a corporation.

17. One possibility is that the proliferation of open source projects in recent years has led to

more competition for open source programmers’ attention, and hence an increase in U . On the

other hand, many corporations have increasingly taken a lenient stance toward letting their employ-

ees contribute to open source projects, which will serve to reduce U .

18. One interpretation of a changing h would be the learning costs incurred by the community

when a licensor chooses an unfamiliar license. Over time, the community learns how the license

works and what its likely implications for the development process are, and h rises.

The Scope of Open Source Licensing 29

� Instances where the community derives considerable benefits from being

able to tailor the code for its own ends. (Recall this is not a benefit to the

licensor, who can always alter the code for his own purposes.)

� Projects that offer higher signaling incentives, whether for ego gratifica-

tion or for addressing career concerns, provided that these benefits will be

more important for the community than for the licensor. (This may be the

case, for instance, if the licensor is a corporation.)19

Often an open source project may not succeed on a stand-alone basis; rather

it may need complementary products in the open source and/or commercial

worlds. The choice of license affects the ease with which the different pieces

of software can be combined: a point frequently mentioned by advocates of the

BSD license, who argue that the GPL and related licenses discourage potential

commercial users. This is captured by p(c) in our model, which depicts the

declining potential commercial benefits from projects with restrictive licenses.

A case in point is the choice of license by programmers trying to get soft-

ware established as a standard. Although they involve risks of hijacking, unre-

strictive licenses make more sense than restrictive ones in such a context. This

conjecture leads us to anticipate that projects geared toward the Internet, where

setting standards has been particularly important in recent years due to the

immaturity of key technologies, might be less likely to have highly restrictive

licenses.

Interestingly, the licensing choices may also give rise to ‘‘dynamic strategic

complementarities’’ or ‘‘dynamic network externalities’’ among open source

licensors. If existing projects in a field have restrictive licenses, the licensor is

more likely to choose a restrictive license in anticipation of future user benefits

from combining the end results. Conversely, a project with a restrictive license

may not flourish in an environment dominated by BSD-licensed projects.20

We can also consider the impact of the commercial potential of a project; for

instance, projects that run on proprietary operating systems or in commercial

19. If there are large signaling incentives for the licensor as well, then two opposing effects are

at work. First, the community is eager to participate, and the licensor can consequentially offer

a less restrictive license. But the licensor’s benefit from a successful project also increases. Thus he

is eager to ensure that the community participates in the project and offers a more restrictive license

to ensure their participation.

20. An additional complication is introduced by the asymmetry of the licenses, especially the

greater restrictions in the GPL. If a BSD-licensed project wanted to make substantial use of a pro-

gram (or portion of a program) covered by the GPL, the project leaders would need to obtain

permission from the copyright owner (for instance, the Free Software Foundation). Were the lead-

ers of the BSD-licensed program to incorporate the GPL code without permission, their BSD prod-

uct would effectively be converted into a GPL product. Thus they will be reluctant to add such

features. GPL projects, on the other hand, can incorporate elements of (or work alongside) either

GPL or BSD programs without subverting their license. Thus, in settings where existing projects

have restrictive licenses, founders of new projects may want to also have restrictive licenses in

order to ease collaborations. The pressures to choose a particular type of license may be less intense

if existing projects have unrestrictive licenses. More generally, the GPL can be seen as serving as

an ‘‘absorbing state’’ in a way that the BSD license does not.

30 The Journal of Law, Economics, & Organization, V21 N1

firms’ user environments. Intuitively such projects should be offered through

unrestrictive licenses. But the licensor may make particularly large profits in

these cases, and thus may be anxious to ensure that the projects are successes

by offering more restrictive licenses.21

We will simply derive one limited result in this case, which will prove useful

for our empirical analysis. Suppose that

pðcÞ ¼ p0 þ hð1� cÞ;

where p0 represents the profits to be made on, say, servicing the open source

software, while h(1 � c) corresponds to the potential profits from integrating

complementary software with the open source program. (The latter set of prof-

its is thus more sensitive to the nature of the license offered.) Let c ¼ 1 cor-

respond to the most restrictive (GPL) license and c 2 [0,1] more generally.

V(c ¼ 1) is independent of h. By way of contrast, when c is less than one,

V is increasing in h, both through the increased profits of the licensor when

the community members participate and through the increased level of partic-

ipation. We therefore conclude that a GPL becomes relatively less attractive

than a less restrictive license as h grows. Thus we would anticipate that a GPL

or other very restrictive license would be less likely to be selected when the

project runs on a proprietary operating system or operates in a commercial

environment.

Finally, we address the sample selection bias that is introduced by the licen-

sor’s participation constraint ðV � VÞ. There is no such bias if the returns from
the proprietary project ðVÞ are independent of the parameters that are relevant

to the open source project. We have argued, though, that V may be positively

correlated with a through the presence of rival software programs. This trun-

cation eliminates some high-a (attractive) projects from the open source do-

main that are instead kept proprietary. Had they been made into open source

projects, these would have received unrestrictive licenses.

We feel that the truncation bias is particularly strong for corporate licensors.

Our conversations suggest that in many cases, corporations convert projects

into open source ones where they lag behind a competitor and hope to catch up

by involving the open source community (or at least to create a competitive

threat to their rival in this segment). Thus we could expect the sample selection

bias to reinforce the corporation’s tendency (derived above) to offer restrictive

licenses.

4. The Sample

4.1 Constructing the Sample

The dataset consisted of all software development projects listed on (and for

a subset of the analyses, hosted on) SourceForge.net. SourceForge is a free

21. One illustration is the case of Netscape’s Mozilla project. The project’s initial license was

greeted with protests. Worried that the project would not be a success, the project leaders and

Netscape replaced it with a more restrictive license (Hammerly, Paquin, and Walton, 1999).

The Scope of Open Source Licensing 31

service that since 1999 has offered hosting and project administration tools to

software development projects. The site’s operations have been funded since

its inception by VA Software (formerly known as VALinux), which at the time

of the site’s creation was primarily selling computers optimized for Linux.

Today, VA has abandoned the hardware business and intends to ultimately

earn a profit by selling a version of the SourceForge service to corporations

to manage the development of software for internal (proprietary) applications.

SourceForge contained (as of May 2002, when the data was accessed) ap-

proximately 39,000 projects. Essentially it accepts listings of (and is willing to

host) all projects that conform to the open source definition discussed above, as

well as selected projects operating under licenses that are not compliant with

that definition.22 Not all open source projects, however, are hosted on Sour-

ceForge. Many of the largest projects instead have their own Web sites. Other

projects are hosted at smaller competing sites. These tend to be much smaller,

however: Savannah, often referred to as SourceForge’s leading competitor,

had 790 active projects in May 2002 [http://savannah.gnu.org (accessed Sep-

tember 17, 2002)]. Even when the projects are hosted elsewhere, however,

these projects in many cases are often still listed in SourceForge (the reader

is simply encouraged to go elsewhere to make a code contribution or report

a bug). In cases where a project is listed on SourceForge but hosted elsewhere,

we are able to gather the basic data about the project, even if we cannot de-

termine the extent of activity in the project.

The termination of projects is an extremely rare event: projects generally

tend to ‘‘fade away’’ rather than being explicitly ceased. SourceForge admin-

istrators will remove a project from its database if explicitly requested to by the

project administrators, but not otherwise. In total, less than two dozen projects

had been removed by the time of the data download. Thus survivorship bias

should not be a significant problem.23

We accessed the data in two forms:

� The basic data about each project was downloaded from the SourceForge

Website.This information includedthestageofdevelopmentof theproject,

the environment in which the project operated (e.g., Windows-based sys-

tems, handheld devices, Internet applications), the type of license

employed, the human language in which the programmers operated, the

operating system under which the program ran, and the intended audience.

Since project leaders report these data to SourceForge, a natural question

relates to their accuracy. An important point to note, though, is that the

22. There are exceptions, however. These include, for instance, projects that involve encryp-

tion software that is banned under U.S. law. For a fuller discussion, see http://sourceforge.net/doc-

man/display_doc.php?docid¼756&group_id¼1 (accessed September 17, 2002).

23. One complication is that a number of projects may have become defunct before Source-

Forge was established and thus were never included in the database to begin with. To address this

concern, we repeat the analyses, eliminating all projects that were added to the database in the first

three months of operation. Any sample selection bias from this problem should be greatly reduced

in the resulting sample. The results in this subsample are little changed.

32 The Journal of Law, Economics, & Organization, V21 N1

http://savannah.gnu.org
http://sourceforge.net/doc-man/display_doc.php?docid=756&group_id=1
http://sourceforge.net/doc-man/display_doc.php?docid=756&group_id=1

project leaders are trying to recruit users to make an extended time com-

mitment to their project. Undertaking a ‘‘bait-and-switch’’ strategy at

thetimeofrecruitingnewusers—forexample,bymakingtheprojectappear

to be something other than what it really is—is unlikely to be a positive

signal to prospective developers. Only in approximately 40% of the cases,

however,was the full information on the project (and especially the license

type) available. This reflected the fact that project leaders did not always

complete this information at the time the project was established on Sour-

ceForge.

� We obtained directly from the SourceForge staff various supplemental

measures, including the date at which the project was first posted on Sour-

ceForge and the activity at the Web sites (e.g., bug reports submitted and

resolved) since the inception of the site in 1999. The latter data were

available only for approximately 10,000 projects. In the other instances,

the projects could have attracted no activity whatsoever, or else the ac-

tivity was concentrated on another site.24

The two datasets were then merged. The set of projects in the SourceForge

database is summarized in the final columns of Tables 1 and 2. In each case,

we indicate the distribution for all licenses and for the subset of projects where

the site has had active postings from SourceForge users.

Several patterns are evident from these tabulations. First, the dominant role of

the GPL is clear. Fully 72% of the licenses are GPLs, and its less constraining

cousin, the lesser GPL, represents another 10%. The BSD license, which repre-

sents 7%of the sample, is third.25Second, the sample is dominatedbyearly stage

projects. This dominance is somewhat less pronounced in the tabulation of proj-

ects with contributions: not surprisingly, the youngest projects have garnered

the fewest contributions to date. Third, the sample is dominated by projects

inEnglish, oriented towardend-users anddevelopers, andgeared to two families

of operating systems (the POSIX family, which includes Linux, BSD, and Sun’s

Solaris, and Microsoft) or else are independent of any operating system.

24. Other concerns that might be raised about the performance measures are not borne out.

Because of the extent of the coordination costs, even projects with multiple sites tend to have

all (or virtually all) the contributions focused on a single one of those sites. Switching projects

from SourceForge to another site appears very rare, in large part due to the ‘‘lock-in effects’’ that

SourceForge enjoys. See, for instance, the discussion in http://www.advogato.org/article/376.html

(accessed September 17, 2002).

25. These tabulations are not weighted (i.e., each project is counted equally). We do not have

a count of the number of lines of code in the project, which might be a natural weighting. We do

have, however, the total number of problems (‘‘bugs’’) reported to the SourceForge depository.

While this measure is not as satisfactory (some projects operate code depositories that are not

part of the SourceForge site, and thus appear to have little activity, but are actually quite vital),

it may nonetheless be a reasonable proxy. The results of the weighted analysis suggest that the GPL

is not as dominant: 63% of the weighted projects have GPL s, 11% have lesser GPLs, and 11% have

BSD licenses.

The Scope of Open Source Licensing 33

http://www.advogato.org/article/376.html

Table 2. Characteristics of the SourceForge Sample

Intended Audience Topic Natural Language Environment Operating System Development Stage

Panel A: Percentage distribution of the entire sample

End Users/Desktop 55.8 Communications 16.2 English 95.8 Console (Text) 30.7 POSIX 57.1 Planning 31.8

Developers 64.1 Security 3.2 French 5.7 X11 29.0 Microsoft 28.6 Pre-Alpha 21.3

System Administrators 24.5 Software Dvlpmt. 17.6 Spanish 3.1 MS Windows 24.1 OS/2 0.2 Alpha 18.9

Other 14.2 Desktop Environ. 4.5 Japanese 1.1 Other 13.5 MacOS 3.5 Beta 22.0

Text Editors 2.8 German 9.2 Internet 31.4 BeOS 0.9 Production/Stable 16.8

Database 6.9 Russian 1.3 No Input/Output 10.3 OS Independent 36.8 Mature 1.8

Education 3.2 Cocoa (MacOS) 1.0 Other 2.0

Internet 24.0 Handhelds/PDAs 0.3 PDA Systems 0.1

Scientific/Enging. 8.3

Multimedia 11.5

Office/Business 5.1

System Tasks 19.8

Printing 0.5

Terminals 0.7

Other 3.1

Games, et al. 15.4

Panel B: Percentage distribution of sample with activity data

End Users/Desktop 53.1 Communications 15.3 English 96.7 Console (Text) 32.7 POSIX 57.9 Planning 8.1

Developers 66.5 Security 3.6 French 5.4 X11 30.2 Microsoft 29.8 Pre-Alpha 12.4

System Administrators 28.5 Software Dvlpmt. 21.2 Spanish 2.9 MS Windows 25.1 OS/2 0.3 Alpha 22.0

Other 12.6 Desktop Environ. 5.1 Japanese 1.2 Other 13.1 MacOS 3.7 Beta 36.2

Text Editors 3.4 German 8.7 Internet 27.9 BeOS 1.0 Production/Stable 32.0

Database 7.1 Russian 1.7 No Input/Output 10.6 OS Independent 36.4 Mature 3.3

Education 2.7 Cocoa (MacOS) 1.2 Other 1.9

Continued

3
4

T
h
e
J
o
u
rn
a
l
o
f
L
a
w
,
E
c
o
n
o
m
ic
s
,
&

O
rg

a
n
iz
a
tio

n
,
V
2
1
N
1

Table 2. Continued

Intended Audience Topic Natural Language Environment Operating System Development Stage

Internet 24.1 Handhelds/PDAs 0.3 PDA Systems 0.2

Scientific/Enging. 9.5

Multimedia 14.3

Office/Business 4.6

System Tasks 20.4

Printing 0.9

Terminals 0.9

Other 2.4

Games, et al. 12.2

The table summarizes the percentage of projects classified along a number of dimensions of the 38,610 projects included in the SourceForge database in May 2002. Panel A presents the distribution for the

entire sample. Panel B presents the distribution for the subset of 9257 observations where SourceForge has data on software contributions. Some projects may be classified into multiple categories.

T
h
e
S
c
o
p
e
o
f
O
p
e
n
S
o
u
rc
e
L
ic
e
n
s
in
g

3
5

A natural concern is the extent to which the measures are colinear: in other

words, the extent to which the characteristics of the projects are highly cor-

related with each other. Table 3 provides a cross-tabulation of project topic and

intended audience. To be sure, there is some clustering: for instance, projects

geared toward system administrators disproportionately involve security and

systems tools (from which they presumably derive greater private benefits

from tailoring the projects to their needs). But certainly, a considerable degree

of diversity exists in this and other comparisons.

Table 4 provides another overview of the sample. It summarizes the 25 most

active projects, based on SourceForge’s ranking of the activity percentile as of

May 2002. It also reports the nature of the project and the license, employing

the categorization of highly restrictive and restrictive licenses discussed in

Section 2. (In some cases, software is made available under multiple licenses

of different types.) The considerable diversity of license and project types

is apparent.

4.2 Mapping Between Theory and Data

As discussed above, we hypothesize that in settings where software has limited

community appeal, the leader will need to offer a restrictive license in order

to induce participation.Weanticipate that thiswill be the case in three instances:

� If the community distrusts the licensor.

� If the benefits from tailoring the code for particular applications are weak.

Table 3. Cross-Tabulation of Intended Audience and Project Topic

Intended audience

End users/desktop Developers System administrators Other

Communications 13.3% 9.2% 13.5% 11.6%

Security 1.8% 1.9% 5.0% 2.3%

Software Dvlpmt. 4.9% 18.4% 6.8% 7.5%

Desktop Environ. 4.7% 2.5% 1.9% 2.0%

Text Editors 2.3% 2.3% 1.2% 1.5%

Database 4.2% 5.4% 6.2% 4.5%

Education 2.9% 1.8% 1.3% 4.8%

Internet 14.5% 17.3% 25.2% 18.3%

Scientific/Enging. 5.9% 6.3% 1.3% 10.2%

Multimedia 10.2% 7.5% 2.2% 6.6%

Office/Business 4.9% 2.9% 3.0% 4.8%

System Tasks 11.6% 13.0% 27.3% 11.3%

Printing 0.5% 0.3% 0.4% 0.3%

Terminals 0.6% 0.5% 0.8% 0.5%

Other 2.8% 1.9% 1.3% 3.5%

Games, et al. 14.7% 8.7% 2.6% 10.2%

The table summarizes the distribution of projects classified along two dimensions of the 38,610 projects included in the

SourceForge database in May 2002. Each column indicates the percentage of projects geared to each intended

audience with that particular topic.

36 The Journal of Law, Economics, & Organization, V21 N1

Table 4. The 25 Most Active Projects

License type

Project name Activity percentile Highly restrictive Restrictive Description

JBoss.org 100 No Yes Application server implemented in Java.

phpMyAdmin 99.99 Yes Yes Tool handling administration of web-based MySQL databases.

Gaim 99.98 Yes Yes Instant messenger application supporting multiple protocols.

DCþþ 99.97 Yes Yes Cþþ version of the Direct Connect client.

PCGen 99.96 No Yes Role-playing game character generator and maintenance program.

Compiere ERP þ CRM 99.95 No Yes Customer management, supply chain, and accounting tools for small business.

Dev-Cþþ 99.94 Yes Yes Full-feature Integrated Developer Environment for Windows.

Arianne RFG 99.93 Yes Yes Engine that allows easy creation of multi-player online games.

Firewall Builder 99.92 Yes Yes Object-oriented interface for various firewall programs.

ScummVM 99.91 Yes Yes Cross-platform translator for point-and-click adventure engines.

MiKTeX 99.90 Partial Partial Implementation of TeX & Friends in Windows.

SquirrelMail 99.89 Yes Yes PHP-based Web e-mail client.

Bochs x86 PC Emulator 99.88 No Yes Portable x86 PC emulation software package for workstations.

Xdoclet 99.87 No No Tool to generate Javadocs @tags and source code.

Marathon 99.86 No Yes Graphical development tool for Firebird and InterBase databases.

CDex 99.85 Yes Yes ‘‘Ripper’’ that allows extraction of digital audio data from audio CDs.

HSQL Database Engine 99.84 No No Relational database engine written in Java.

BlackNova Traders 99.83 No No Web-based, multi-player space exploration game.

FileZilla 99.82 Yes Yes Feature-rich FTP client for Windows.

Miranda IM Client 99.81 Yes Yes Instant messaging client for Windows.

Fink 99.80 Yes Yes Adapting Unix open source software to Darwin and Mac OSx.

Fluxbox 99.79 No No X.11 window management program.

TUTOS 99.78 Yes Yes Web-based groupware program to manage teams, events, projects, etc.

zenTrack 99.77 Yes Yes Complete project management, bug tracking, and tech support log system.

Pure-FTPd 99.76 Yes Yes FTP server, based on Troll-FTPd.

The table indicates, for the 25 most active projects in the SourceForge dataset, the name of the project, its activity percentile, the license type, and a description of the project.

T
h
e
S
c
o
p
e
o
f
O
p
e
n
S
o
u
rc
e
L
ic
e
n
s
in
g

3
7

� If ego gratification and career concerns incentives do not have much

power, as the audience mostly does not look at the code and is not com-

posed of the programmers’ peers.

In addition, under certain additional assumptions, we show that a highly re-

strictive license is unlikely to be chosen when the project runs a proprietary

operating system or operates in a commercial environment.

In this section we review the independent variables we employ in the anal-

ysis, and seek to understand the predicted effects for each.

4.2.1 Intended Audience. In our earlier work (2002), we argue that an im-

portant driver of the decision to participate in open source projects is the career

enhancement and ego gratification that results in demonstrating one’s pro-

gramming prowess to sophisticated peers. Thus we hypothesize that code

aimed at developers, and to a lesser extent, system administrators, is more

likely to belong to the ‘‘strong community appeal’’ category. This reasoning

suggests that code aimed at developers is more likely to be licensed under

a permissive license than code oriented toward unsophisticated end users.

4.2.2 Topic. On a similar note, we believe that projects on topics likely to be

geared toward sophisticated peers are more likely to have permissive licensing

terms, while those geared toward end-users will be less permissive. Among the

categories identified by SourceForge, ‘‘Software Development’’ seems unam-

biguously in the former class. ‘‘Education,’’ ‘‘Games,’’ and ‘‘Office/Business’’

fall clearly in the latter. The other categories cannot be as clearly parsed, or else

seem largely geared to the intermediate category of system administrators.26

4.2.3 Natural Language. We anticipate that projects whose natural language

is not English will have a harder time generating community appeal because

the pool of potential contributors is considerably smaller. As a result, we ex-

pect that projects with another native language will be more likely to have

a restrictive license.

It should be noted that Japan is a special case, because the only localized

version of the SourceForge database (true both at the time of the data extrac-

tion and in 2004) is http://sourceforge.jp. As a result, there appears to be a sig-

nificant selection effect at work, which leads to only a modest fraction of

Japanese projects (presumably the ones with the greatest appeal to the open

source community) included in the main SourceForge database. Thus we can-

not really compare the coefficients on the Japanese variable with the others due

to this selection effect.

26. For instance, ‘‘printing’’ includes both device drivers geared toward end-users as well as

libraries for developers.

38 The Journal of Law, Economics, & Organization, V21 N1

http://sourceforge.jp

4.2.4 Environment and Operating System. We employ two proxies that

should imperfectly capture the programs’ technical features: the environment

for which the program is intended and the operating system on which it runs.27

The theoretical analysis—as well as the broader considerations discussed in

Section 3—suggests that projects operating in more commercial settings will

employ less restrictive licenses.

4.2.5 Development Stage. The final set of variables is intended as a control.

These projects are of different ‘‘vintages’’: while some have been in existence

for a considerable period of time and are well developed, others are recent

projects and in an early stage. As highlighted above, the choice of license type

may be influenced by many considerations, including shifts in the opportunity

cost of participating in such projects (U), network effects, and shifting ideol-

ogies. We might expect that the strength of these considerations might change

over time. As a result, it might be anticipated that the measures of development

stage might capture the shifting propensity of different vintages of project

leaders to choose particular licenses.28

5. The Determinants of Open Source Licenses

We then examine the determinants of the license types employed in these con-

tracts. We first explore the individual licensing components and then use an

index of license scope.

We first summarize the distribution of projects along two measures of

license scope that we discussed in Section 2: whether the license is restrictive

or not and whether it is highly restrictive or not. These tabulations are chal-

lenging because of the complexity of some situations. Some projects operate

under multiple licenses: in these instances, different sections of the code may

be under different licenses, or the contributor may be able to choose the license

he wishes to govern his contribution. In other cases, a single license may allow

a user to choose the degree of protection he wishes to have. We thus code each

project as to whether all or some of the code contributed was subject to re-

strictive or highly restrictive provisions.

Table 5 highlights several patterns:

� Consistent with the framework in Section 3, highly restrictive licenses are

more common for applications geared toward end-users, but are

27. The environment refers to the graphical user interface for the user’s desktop. In addition to

capabilities provided by a window manager (i.e., the ability to move, resize, and hide windows),

a desktop environment usually also includes such elements as a file manager, a program manager,

and other utilities. An operating system is the software responsible for allocating system resources,

including memory, processor time, disk space, and peripheral devices such as printers, modems,

and the monitor. All application programs use the operating system to gain access to these system

resources as they are needed.

28. Wewill also address this vintage question in another way below, by examining projects that

were added to SourceForge at different times in separate regressions.

The Scope of Open Source Licensing 39

significantly less common for those applications aimed toward software

developers. Highly restrictive licenses are also more common for projects

geared to systems administrators, which may reflect the weaker commu-

nity appeal of these efforts.

� Also consistent with the above framework, applications that are consumer

oriented (e.g., desktop tools and games) are substantially more likely to

have highly restrictive licenses. Those geared to the software develop-

ment process are much less so. Similarly products geared to technical

users (e.g., scientific and engineering programs and database software)

are less likely to have highly restrictive licenses.

� Highly restrictive licenses are generally much more common for projects

whose natural language is other than English. (Japanese, as noted above,

is a special case.) These results are also consistent with our theoretical

predictions.

� Highly restrictive licenses are less common for projects operating in com-

mercial environments such as Microsoft Windows or Apple’s Cocoa. But

projects operating in the X11 environment—a network-transparent win-

dow system developed at MIT which runs on a wide range of computing

and graphics machines—are more likely to be highly restrictive. While

this and the following result are consistent with our theory, our interpre-

tation must be cautious.

� Highly restrictive licenses are significantly more common for projects

that run under the open source-based POSIX family of operating systems,

as opposed to proprietary ones (or those which are operating system in-

dependent).

� Highly restrictive licenses are less common for more mature projects. As

we will discuss below, this pattern appears to reflect a ‘‘vintage effect’’: it

may have been more common for older projects to employ licenses other

than the GPL. In part, ideological considerations may have played a role

in this trend. During the late 1990s, the stridency of arguments for the

GPL by its proponents seemed to intensify. Alternatively, the opportunity

cost for programmers may have shifted over time.

When we examine in Table 6 the presence of restrictive provisions, we find

a similar pattern. Exceptions include the absence of any significant pattern

involving products geared to system administrators, and a somewhat different

mixture of topics where restrictive provisions are commonplace.

Tables7and8 thenexamine thesepatterns ina regression framework.Reflect-

ing the fact that the dependent variable is in each case a dummy, we employ

a probit specification. For each class of variables we delete one of the indepen-

dent variables from the specification: the dummy variables denoting projects in

the planning stage, those operating in a console (text) environment, those geared

toward other audiences, those whose natural language is English, those geared

toward another operating system, and those with another topic.

40 The Journal of Law, Economics, & Organization, V21 N1

Table 5. Tabulation of Characteristics of Projects With and Without Highly Restrictive

License Provisions

All Licenses

Highly Restrictive?

Some Licenses

Highly Restrictive?

Yes No Yes No

Intended audience

End-users/desktop 62.3 ***42.0 62.0 ***40.2

Developers 57.3 ***78.5 58.3 ***78.4

System administrators 29.5 ***23.3 29.6 ***22.2

Other 14.7 ***12.8 14.8 ***12.2

Topic

Communications 17.0 ***14.1 16.9 ***14.1

Security 3.2 3.1 3.3 2.9

Software development 12.2 ***29.6 12.8 ***30.3

Desktop environment 4.9 ***3.9 4.9 ***3.7

Text editors 2.8 3.0 2.8 3.0

Database 6.6 ***7.7 6.6 ***7.7

Education 3.3 *2.9 3.3 3.0

Internet 24.1 23.9 23.9 24.4

Scientific/engineering 7.9 ***9.3 8.0 ***9.4

Multimedia 11.4 12.0 11.5 11.7

Office/business 5.5 ***4.4 5.5 ***4.3

System tasks 20.4 ***18.6 20.8 ***17.4

Printing 0.4 **0.7 0.5 0.6

Terminals 0.8 0.6 0.8 **0.5

Other 3.1 3.2 3.0 3.3

Games, etc. 16.6 ***12.3 16.5 ***12.1

Natural language

English 95.4 ***97.1 95.5 ***97.2

French 6.0 ***4.8 6.0 ***4.7

Spanish 3.5 ***2.4 3.4 ***2.3

Japanese 0.8 ***1.7 0.9 ***1.6

German 10.4 ***6.6 10.2 ***6.5

Russian 1.2 *1.5 1.3 1.5

Environment

Console (text) 30.3 ***32.8 31.0 31.3

X11 31.2 ***24.7 31.6 ***22.9

MS Windows 22.7 ***26.5 22.9 ***26.5

Other 10.9 ***19.5 11.4 ***19.4

Internet 31.2 31.0 30.9 31.9

No input/output 9.5 12.5 9.8 12.1

Cocoa (MacOS) 0.9 ***1.3 0.9 ***1.4

Handhelds/PDAs 0.3 0.4 0.3 0.4

Operating system

POSIX 61.3 ***48.9 61.6 ***46.6

Microsoft 27.0 ***31.6 27.2 ***31.6

OS/2 0.2 0.2 0.2 0.2

MacOS 2.8 ***5.1 2.9 ***5.2

Continued

The Scope of Open Source Licensing 41

The primary differences in the results in Table 7 from those in the univariate

analyses are as follows:

� Software geared toward developers is sharply different from that geared

toward other users, being much less likely to have highly restrictive

licenses.

� Among the projects less likely to have highly restrictive licenses are those

related to software development, desktop applications, the Internet, mul-

timedia, and printing, consistent with the arguments above.

� Projects whose natural language is Japanese are far less likely to have

highly restrictive licenses, while German and Spanish ones are much

more likely to have them.

The results in Table 8 are similar, with the exception again of no significant

pattern involving products geared to system administrators and a somewhat

different mixture of topics where restrictive licenses are commonplace.

These effects are not only statistically significant, but economically mean-

ingful as well. Consider, for instance, the first regression in Table 7. A project

in the planning stages (the omitted case) has a 12% higher predicted proba-

bility of all licenses being highly restrictive than one in the mature stages. A

project geared toward individual end-users has a 23% higher probability of all

licenses being highly restrictive than one oriented toward developers.

The regression analysis in Table 9 looks at restrictive and highly restrictive

licenses in a single specification. To do this, we employ indexes, which

Table 5. Continued

All Licenses

Highly Restrictive?

Some Licenses

Highly Restrictive?

Yes No Yes No

BeOS 0.7 ***1.4 0.8 ***1.4

OS independent 33.1 ***44.8 33.1 ***46.1

Other 1.8 ***2.5 1.9 2.2

PDA Systems 0.2 0.1 0.2 0.1

Development Stage

Planning 32.2 ***28.9 32.4 ***28.1

Pre-Alpha 21.7 **20.3 21.8 ***20.0

Alpha 18.6 ***20.1 18.8 **19.8

Beta 21.8 ***23.5 22.0 **23.3

Production/stable 16.3 ***18.8 16.5 ***18.6

Mature 1.4 ***2.7 1.5 ***2.6

The sample consists of 38,610 projects included in the SourceForge database in May 2002. The table summarizes

the percentage of projects with and without highly restrictive licensing provisions, classified along a number of

dimensions. Because some projects are licensed under multiple licenses, the projects are separated as to whether all

licenses are highly restrictive or not, and whether some licenses are highly restrictive or not. Some projects may be

classified into multiple categories. The significance level from a chi-squared test is reported in each case where the

null hypothesis of no difference is rejected.

*, **, ***Significant at the 10%, 5%, and 1% confidence levels, respectively.

42 The Journal of Law, Economics, & Organization, V21 N1

Table 6. Tabulation of Characteristics of Projects With and Without Restrictive

License Provisions

All licenses

restrictive?

Some licenses

restrictive?

Yes No Yes No

Intended audience

End-users/desktop 58.2 ***46.3 58.1 ***45.6

Developers 61.8 ***73.1 62.2 ***72.5

System administrators 27.5 27.7 27.7 26.6

Other 14.0 14.6 14.1 14.0

Topic

Communications 16.3 *15.2 16.3 15.2

Security 3.1 **3.7 3.1 3.4

Software development 15.8 ***25.5 16.0 ***25.5

Desktop environment 4.8 ***3.4 4.8 ***3.3

Text editors 2.8 3.2 2.8 3.1

Database 6.8 7.2 6.8 7.3

Education 3.1 3.5 3.1 *3.6

Internet 23.5 ***26.1 23.6 ***26.2

Scientific/engineering 8.6 **7.5 8.5 *7.7

Multimedia 12.0 ***10.0 12.0 ***9.8

Office/business 5.3 **4.6 5.3 **4.5

System tasks 19.8 20.1 20.0 19.0

Printing 0.5 *0.7 0.5 0.6

Terminals 0.8 0.6 0.8 0.6

Other 2.9 ***3.8 2.9 ***3.9

Games, etc. 15.9 ***12.7 15.8 ***12.7

Natural language

English 95.6 ***97.1 95.7 ***97.1

French 5.9 ***4.7 5.9 ***4.4

Spanish 3.3 ***2.3 3.3 ***2.2

Japanese 0.9 ***1.9 0.9 ***1.7

German 10.1 ***5.7 10.0 ***5.6

Russian 1.2 *1.6 1.3 1.6

Environment

Console (text) 30.2 ***34.6 30.6 ***33.3

X11 31.2 ***21.3 31.1 ***20.6

MS Windows 23.7 24.6 23.7 24.3

Other 12.3 ***18.3 12.6 ***17.7

Internet 30.7 ***33.1 30.7 ***33.3

No input/output 9.8 ***12.8 10.0 12.3

Cocoa (MacOS) 0.9 ***1.4 0.9 ***1.4

Handhelds/PDAs 0.3 0.3 0.3 0.3

Operating system

POSIX 59.5 ***49.0 59.6 ***47.2

Microsoft 27.9 ***30.7 28.0 ***30.4

OS/2 0.2 0.3 0.2 0.2

MacOS 3.0 ***5.7 3.1 ***5.7

Continued

The Scope of Open Source Licensing 43

measure whether the project has various licensing provisions. Because of the

ambiguities surrounding the interpretation of cases where there are alternative

licenses, we proceed in two ways. In the first regression, the index takes on the

value 4 if all licenses are highly restrictive; 3 if some are highly restrictive; 2 if

all licenses are restrictive but none are highly restrictive; 1 if some are restric-

tive but none are highly restrictive; and 0 otherwise. In the second regression,

the index takes on the value 2 if all licenses are highly restrictive; 1 if all are

restrictive and some (but not all) are highly restrictive; and 0 otherwise.

We estimate ordered logit regressions because of the nature of the dependent

variable. In an ordered logit specification, a license that was rated as a ‘‘4’’

would be treated as being more restrictive than one rated as a ‘‘2,’’ but not

necessarily twice as much so. The findings in Table 9 are largely consistent

with the analyses reported above, particularly those in Table 8.

One concern with the analysis in Table 9 is the presence of projects with

multiple licenses. We explore the robustness of the results in unreported

regressions. Rather than denoting projects that have ‘‘all highly restrictive’’

and ‘‘some highly restrictive’’ licenses, we treat the cases with multiple

licenses in two different ways. We first reestimate the equations, eliminating

all projects that have multiple licenses. We also rerun the regressions employ-

ing the maximum degree of restrictiveness of any license. The results are little

changed in either case.

We also undertook an analysis that attempted to control for the age of the

open source project. As noted above, we were concerned that a survival effect

might be at work: the characteristics of older projects might be different from

Table 6. Continued

All licenses

restrictive?

Some licenses

restrictive?

Yes No Yes No

BeOS 0.8 ***1.4 0.8 ***1.5

OS independent 35.1 ***43.4 35.2 ***44.0

Other 1.8 ***2.9 1.9 ***2.5

PDA systems 0.2 0.2 0.2 0.1

Development stage

Planning 31.6 ***29.6 31.7 ***29.0

Pre-Alpha 21.5 *20.3 21.6 ***19.8

Alpha 18.9 19.8 19.0 19.7

Beta 22.2 22.7 22.3 22.2

Production/stable 16.5 ***19.5 16.6 ***19.0

Mature 1.5 ***3.1 1.6 ***2.8

The sample consists of 38,610 projects included in the SourceForge database in May 2002. The table summarizes the

percentage of projects with and without restrictive licensing provisions, classified along a number of dimensions.

Because some projects are licensed under multiple licenses, the projects are separated as to whether all licenses are

restrictive or not, and whether some licenses are restrictive or not. Some projects may be classified into multiple

categories. The significance level from a chi-squared test is reported in each case where the null hypothesis of no

difference is rejected.

*, **, *** Significant at the 10%, 5%, and 1% confidence levels, respectively.

44 The Journal of Law, Economics, & Organization, V21 N1

Table 7. Regression Analysis of Characteristics of Projects With and Without Highly

Restrictive License Provisions

Dependent variable

All Licenses

Highly Restrictive?

Some Licenses

Highly Restrictive?

Coefficient Standard error Coefficient Standard error

Intended audience

End-Users/desktop 0.32 ***0.03 0.37 ***0.03

Developers �0.24 ***0.03 �0.18 ***0.03

System administrators 0.14 ***0.03 0.16 ***0.03

Topic

Communications �0.01 0.03 �0.003 0.03

Security �0.08 0.06 �0.06 0.06

Software development �0.40 ***0.03 �0.36 ***0.03

Desktop environment �0.15 ***0.06 �0.12 **0.06

Text editors �0.01 0.07 �0.01 0.07

Database 0.005 0.04 0.03 0.05

Education �0.09 0.06 �0.10 *0.06

Internet �0.08 ***0.03 �0.08 **0.03

Scientific/engineering �0.08 *0.04 �0.06 0.04

Multimedia �0.16 ***0.04 �0.12 ***0.04

Office/business �0.04 0.05 �0.001 0.05

System tasks �0.04 0.03 0.01 0.03

Printing �0.44 ***0.17 �0.43 **0.17

Terminals �0.03 0.13 0.09 0.14

Games, etc. 0.05 0.04 0.07 *0.04

Natural language

French 0.08 *0.05 0.11 ***0.05

Spanish 0.18 ***0.07 0.18 ***0.07

Japanese �0.46 ***0.10 �0.38 ***0.11

German 0.23 ***0.04 0.19 ***0.04

Russian 0.08 0.10 0.10 0.10

Environment

X11 0.05 0.03 0.10 ***0.04

MS Windows �0.07 *0.04 �0.07 *0.04

Other �0.32 ***0.03 �0.30 ***0.03

Internet �0.03 0.04 �0.02 0.03

No input/output �0.28 ***0.04 �0.23 ***0.04

Cocoa (MacOS) �0.06 0.10 �0.15 0.10

Handhelds/PDAs �0.21 0.19 �0.20 0.19

Operating system

POSIX 0.16 ***0.03 0.21 ***0.03

Microsoft �0.15 ***0.03 �0.15 ***0.04

OS/2 �0.01 0.25 �0.04 0.26

MacOS �0.36 ***0.06 �0.32 ***0.06

BeOS �0.27 **0.12 �0.24 **0.12

OS independent �0.16 ***0.03 �0.14 ***0.03

Continued

The Scope of Open Source Licensing 45

others. This effect might lead to the conclusion that a given feature affected the

choice of license, when it was actually the age that was critical.

While we do not know the date at which the project was initiated, we do have

a proxy for this measure: when the project was added to the SourceForge da-

tabase. (Because the database only began operations in 1999, this measure

does not allow us to identify the oldest projects.) We employ this measure

in several ways. Table 10 shows the most direct approach. We reestimate

the regression reported in the first column of Table 7, first restricting the sam-

ple to the oldest projects (those added to the SourceForge database in its first

year of operations) and the youngest (those added in 2002).

The patterns relating to stage of development disappear in these regressions,

underscoring the suggestion that this measure may be capturing a vintage ef-

fect. But at the same time, the key explanatory variables differ little across the

time periods. Projects geared toward end-users tend to have highly restrictive

licenses, while those oriented toward developers are less likely to have them.

The types of projects that are likely to be attractive to consumers—such as

games—are more likely to have highly restrictive licenses. Finally, projects

that are designed to run on commercial operating systems are less likely to

have highly restrictive licenses.

Table 7. Continued

Dependent variable

All Licenses

Highly Restrictive?

Some Licenses

Highly Restrictive?

Coefficient Standard error Coefficient Standard error

PDA systems 0.23 0.26 0.33 0.26

Development stage

Pre-Alpha �0.06 *0.03 �0.01 0.03

Alpha �0.07 **0.03 �0.02 0.03

Beta �0.09 ***0.03 �0.04 0.03

Production/stable �0.15 ***0.03 �0.11 ***0.03

Mature �0.34 ***0.08 �0.28 ***0.08

Constant 0.80 ***0.05 0.72 ***0.05

v2 statistic 1,580.35 1,494.92

p-value 0.000 0.000

Log-likelihood �8,580.97 �8,141.81

Number of observations 15,509 15,509

The sample consists of 38,610 projects included in the SourceForge database in May 2002. The dependent variable is

a dummy denoting whether the project has highly restrictive licensing provisions. Because some projects are licensed

under multiple licenses, the projects are separated as to whether all licenses are highly restrictive or not, and whether

some licenses are highly restrictive or not. The independent variables include dummy variables capturing various

features of the open source projects. All regressions employ probit specifications.

*, **, *** Significant at the 10%, 5%, and 1% confidence levels respectively.

In each regression, the following variables are omitted: the dummy variables denoting projects in the planning stage,

those operating in a console (text) environment, those geared toward other audiences, those whose natural language

is English, those geared toward another operating system, and those with another topic.

46 The Journal of Law, Economics, & Organization, V21 N1

Table 8. Regression Analysis of Characteristics of Projects With and Without Restrictive

License Provisions

Dependent variable

All licenses restrictive? Some licenses restrictive?

Coefficient Standard error Coefficient Standard error

Intended audience

End-users/desktop 0.15 ***0.03 0.18 ***0.03

Developers �0.07 ***0.03 �0.05 0.03

System administrators 0.02 0.03 0.05 0.03

Topic

Communications 0.03 0.04 0.03 0.04

Security �0.11 *0.06 �0.04 0.07

Software development �0.20 ***0.04 �0.15 ***0.04

Desktop environment �0.09 0.06 �0.07 0.07

Text editors �0.08 0.07 �0.06 0.07

Database 0.08 0.05 0.07 0.05

Education �0.15 **0.07 �0.13 *0.07

Internet �0.07 **0.03 �0.06 *0.03

Scientific/engineering 0.10 **0.05 0.09 *0.05

Multimedia 0.01 0.04 0.05 0.04

Office/business 0.01 0.06 0.06 0.06

System tasks �0.03 0.03 0.01 0.04

Printing �0.33 *0.17 �0.31 *0.18

Terminals 0.12 0.14 0.19 0.15

Games, etc. 0.06 0.04 0.09 **0.04

Natural Language

French 0.07 0.05 0.13 **0.06

Spanish 0.17 **0.07 0.18 **0.08

Japanese �0.44 ***0.11 �0.30 ***0.11

German 0.27 ***0.05 0.26 ***0.05

Russian 0.01 0.10 0.05 0.11

Environment

X11 0.18 ***0.04 0.19 ***0.04

MS Windows �0.05 0.04 �0.04 0.04

Other �0.22 ***0.04 �0.18 ***0.04

Internet �0.04 0.03 �0.02 0.03

No input/output �0.18 ***0.04 �0.14 ***0.04

Cocoa (MacOS) �0.07 0.11 �0.08 0.11

Handhelds/PDAs �0.01 0.21 �0.02 0.21

Operating system

POSIX 0.14 ***0.04 0.17 ***0.04

Microsoft �0.07 **0.04 �0.05 0.04

OS/2 �0.31 0.25 �0.41 0.26

MacOS �0.34 ***0.07 �0.34 ***0.07

BeOS �0.24 *0.12 �0.28 **0.13

OS independent �0.06 *0.04 �0.04 0.04

PDA systems 0.09 0.27 0.27 0.30

Continued

The Scope of Open Source Licensing 47

In unreported regressions, we explore the impact of time in a variety of

ways. We employ dummy variables denoting the year the project was added

to the SourceForge database as independent variables. We also include inter-

action terms between the date of inclusion and the other key independent var-

iables. These changes have only a very modest effect on the results.

One prediction offered in Section 3 was that projects that were borne out of

corporations should differ from other ones. We suggested that in cases where

a corporation made its own code available to third parties, the license type

should be particularly constraining. We examine this possibility in an explor-

atory analysis. From a careful examination of news stories and corporate Web

sites, we identified 51 entries where we could unambiguously determine that

the project originated with proprietary software developed by a corporation.

While the number of such cases is modest, such an approach allows us to at

least tentatively explore this theoretical suggestion.

As Table 11 reports, projects that involve software developed in a corporate

setting are likely to have more restrictive licenses. While the effects are in the

predicted direction, and the magnitude of the coefficients are in some cases

substantial, the results never become statistically significant. Nonetheless,

the results are at least suggestive.

Wealso address the concern that the inactive projects (oneswhere nocodecon-

tributions are made to the SourceForge site) listed on the site are identified in

Table 8. Continued

Dependent variable

All licenses restrictive? Some licenses restrictive?

Coefficient Standard error Coefficient Standard error

Development Stage

Pre-Alpha �0.04 0.03 0.001 0.03

Alpha �0.07 **0.03 �0.03 0.03

Beta �0.04 0.03 0.003 0.03

Production/stable �0.12 ***0.03 �0.09 **0.04

Mature �0.33 ***0.08 �0.25 ***0.09

Constant 0.96 ***0.05 0.86 ***0.05

v2 statistic 587.86 527.80

p-value 0.000 0.000

Log-likelihood �7,168.42 �6,733.77

Number of observations 15,509 15,509

The sample consists of 38,610 projects included in the SourceForge database in May 2002. The dependent variable is

a dummy denoting whether the project has restrictive licensing provisions. Because some projects are licensed under

multiple licenses, the projects are separated as to whether all licenses are restrictive or not, and whether some

licenses are restrictive or not. The independent variables include dummy variables capturing various features of the

open source projects. All regressions employ probit specifications.

*, **, *** Significant at the 10%, 5%, and 1% confidence levels, respectively.

In each regression, the following variables are omitted: the dummy variables denoting projects in the planning stage,

those operating in a console (text) environment, those geared toward other audiences, those whose natural language

is English, those geared toward another operating system, and those with another topic.

48 The Journal of Law, Economics, & Organization, V21 N1

Table 9. Regression Analysis of Characteristics of Projects With and Without Various

License Provisions

Dependent variable

Five-part index Three-part index

Coefficient Standard error Coefficient Standard error

Intended audience

End-users/desktop 0.49 ***0.04 0.46 ***0.04

Developers �0.37 ***0.04 �0.38 ***0.05

System administrators 0.21 ***0.05 0.19 ***0.05

Topic

Communications �0.003 0.05 0.0004 0.05

Security �0.13 0.10 �0.17 0.10

Software development �0.51 ***0.05 �0.52 ***0.05

Desktop environment �0.21 **0.09 �0.23 **0.09

Text editors �0.05 0.11 �0.05 0.11

Database 0.04 0.07 0.04 0.07

Education �0.18 *0.11 �0.18 *0.11

Internet �0.13 ***0.05 �0.13 ***0.05

Scientific/engineering �0.07 0.07 �0.06 0.07

Multimedia �0.19 ***0.06 �0.19 ***0.06

Office/business �0.03 0.09 �0.05 0.09

System tasks �0.04 0.05 �0.06 0.05

Printing �0.70 ***0.26 �0.70 ***0.26

Terminals 0.03 0.21 0.004 0.21

Games, etc. 0.12 *0.06 0.10 *0.06

Natural language

French 0.16 *0.08 0.14 *0.08

Spanish 0.33 ***0.11 0.33 ***0.11

Japanese �0.64 ***0.16 �0.74 ***0.16

German 0.38 ***0.07 0.39 ***0.07

Russian 0.13 0.15 0.08 0.15

Environment

X11 0.14 **0.06 0.14 **0.06

MS Windows �0.10 0.06 �0.11 *0.06

Other �0.46 ***0.05 �0.47 ***0.05

Internet �0.05 0.05 �0.05 ***0.05

No input/output �0.40 ***0.06 �0.42 ***0.06

Cocoa (MacOS) �0.14 0.16 �0.11 0.16

Handhelds/PDAs �0.26 0.29 �0.23 0.29

Operating system

POSIX 0.29 ***0.05 0.26 ***0.05

Microsoft �0.22 ***0.06 �0.22 ***0.06

OS/2 �0.24 0.42 �0.20 0.42

MacOS �0.58 ***0.10 �0.59 ***0.10

BeOS �0.43 **0.18 �0.41 **0.19

OS independent �0.21 ***0.05 �0.22 ***0.05

PDA systems 0.39 0.42 0.31 0.42

Continued

The Scope of Open Source Licensing 49

a manner that introduces some biases. We rerun the regressions reported here,

restricting the sample to the approximately 10,000 observationswith code contri-

butions. We also repeat the analysis, weighting the observations by a number of

activitymeasures: the number of bugs reported, the number of active developers,

and the percentile of activity of the project.While, as discussed in the footnote 25,

the mixture of licenses employed changes somewhat when such weights are

employed, the magnitude and significance of the key independent variables are

little changed.

Another concern was that the ideological considerations noted in Section 3

may distort the decisions being made. To partially address this concern, we

reran the regressions reported in Table 9, eliminating those with BSD licenses

and GPLs, the two licenses whose use has attracted the most polarized debate.

The results remained similar: for instance, those projects geared toward end-

users and system administrators were likely to be more restrictive, while those

oriented toward developers were significantly more permissive.

6. The Relationship Between License Choice and Success

In Section 3 we showed that, holding the attractiveness of the project for the li-

censor constant, participation inanopensourceproject shouldbenegativelycor-

related with the restrictiveness of the license. To test this claim, we undertake a

preliminaryanalysisof therelationshipbetweenlicense typeandproject success.

Table 9. Continued

Dependent variable

Five-part index Three-part index

Coefficient Standard error Coefficient Standard error

Development Stage

Pre-Alpha �0.06 0.05 �0.08 *0.05

Alpha �0.09 *0.05 �0.12 **0.05

Beta �0.10 **0.05 �0.12 **0.05

Production/stable �0.21 ***0.05 �0.24 ***0.05

Mature �0.51 ***0.13 �0.56 ***0.13

v2 statistic 1,393.70 1,352.98

p-value 0.000 0.000

Log-likelihood �13,064.97 �11,662.26

Number of observations 15,509 15,509

The sample consists of 38,610 projects included in the SourceForge database in May 2002. The dependent variable

indexes whether the project has various licensing provisions. In the first regression, the index takes on the value 4 if all

licenses are highly restrictive; 3 if some are highly restrictive; 2 if all licenses are restrictive; 1 if some are restrictive; and

0 otherwise. In the second regression, the index takes on the value 2 if all licenses are highly restrictive; 1 if all are

restrictive; and 0 otherwise. The independent variables include dummy variables capturing various features of the

open source projects. All regressions employ ordered logit specifications.

*, **, *** Significant at the 10%, 5% and 1% confidence levels, respectively.

In each regression, the following variables are omitted: the dummy variables denoting projects in the planning stage,

those operating in a console (text) environment, those geared toward other audiences, those whose natural language

is English, those geared toward another operating system, and those with another topic.

50 The Journal of Law, Economics, & Organization, V21 N1

Table 10. Regression Analysis of Characteristics of Projects With and Without Highly

Restrictive License Provisions, Comparing Early and Late Projects

Dependent variable: all licenses highly restrictive?

Early projects only Late projects only

Coefficient Standard error Coefficient Standard error

Intended audience

End-users/desktop 0.44 ***0.09 0.36 ***0.06

Developers �0.40 ***0.09 �0.16 ***0.06

System administrators 0.05 0.10 0.14 **0.07

Topic

Communications 0.13 0.11 �0.03 0.07

Security �0.17 0.21 �0.10 0.13

Software development �0.44 ***0.11 �0.38 ***0.07

Desktop environment 0.05 0.17 �0.13 0.14

Text editors 0.34 0.25 �0.20 0.13

Database �0.16 0.15 �0.02 0.10

Education 0.23 0.24 �0.41 ***0.13

Internet �0.09 0.11 �0.07 0.07

Scientific/engineering �0.13 0.14 �0.08 0.10

Multimedia �0.15 0.11 �0.29 ***0.09

Office/business 0.36 *0.20 �0.13 0.11

System tasks �0.03 0.11 0.09 0.07

Printing �0.18 0.49 �0.37 0.38

Terminals �0.53 0.47 0.40 0.32

Games, etc. 0.20 *0.12 0.23 ***0.08

Natural language

French 0.18 0.15 0.14 0.11

Spanish 0.43 *0.26 0.22 0.15

Japanese �0.33 0.38 �0.57 **0.24

German 0.17 0.15 0.15 *0.08

Russian 0.30 0.46 0.14 0.18

Environment

X11 0.04 0.11 0.09 0.08

MS Windows �0.20 0.13 �0.01 0.09

Other �0.38 ***0.11 �0.37 ***0.07

Internet 0.08 0.11 0.002 0.07

No input/output �0.28 **0.12 �0.29 ***0.09

Cocoa (MacOS) 0.64 0.54 �0.12 0.16

Handhelds/PDAs �0.14 0.21

Operating system

POSIX 0.11 0.12 0.22 ***0.07

Microsoft �0.33 ***0.11 �0.10 0.08

OS/2 0.38 0.65

MacOS �0.27 0.19 �0.19 0.13

BeOS �0.32 0.28 �0.62 **0.30

OS independent �0.27 **0.11 �0.15 *0.07

PDA systems 0.25 0.29

Continued

The Scope of Open Source Licensing 51

To undertake this analysis, we first must identify a measure of project suc-

cess. Because no single success measure is widely agreed upon, we employ

a variety of metrics:

� The percentile ranking, based on activity since the inception of the project

on SourceForge.

� The number of developers registered on SourceForge to work on the pro-

ject (developers must sign up for individual projects to which they seek to

contribute).

� The number of ‘‘bugs,’’ or software errors, reported over the life of the

project’s stay on SourceForge. A dynamic program with frequent

contributions and heavy use is likely to have many problems reported.29

As noted above, we restrict the sample to the approximately 10,000 projects

with some activity on SourceForge.

Panel A of Table 12 presents the simplest analysis: a comparison of the

activity of each project for each class of license. The results suggest that

Table 10. Continued

Dependent variable: all licenses highly restrictive?

Early projects only Late projects only

Coefficient Standard error Coefficient Standard error

Development stage

Pre-Alpha �0.05 0.12 �0.12 *0.07

Alpha �0.12 0.11 �0.09 0.07

Beta �0.09 0.09 �0.001 0.07

Production/stable �0.09 0.10 �0.18 **0.07

Mature �0.05 0.20 �0.40 0.24

Constant 0.89 ***0.16 0.64 ***0.10

v2 statistic 278.36 362.18

p-value 0.000 0.000

Log-likelihood �770.02 �1,761.45

Number of observations 1,478 3,238

The sample consists of 38,610 projects included in the SourceForge database in May 2002. The dependent variable is

a dummy denoting whether all the licenses under which the project is licensed have highly restrictive provisions. The

independent variables include dummy variables capturing various features of the open source projects. The first

regression is restricted to those projects added to the SourceForge database before 2000; the second regression to

those added in 2002. All regressions employ probit specifications.

*, **, *** Significant at the 10%, 5%, and 1% confidence levels, respectively.

In each regression, the following variables are omitted: the dummy variables denoting projects in the planning stage,

those operating in a console (text) environment, those geared toward other audiences, those whose natural language

is English, those geared toward another operating system, and those with another topic. Certain additional variables

were dropped from the first regression due to collinearity.

29. One important limitation to this analysis is that different types of software may differ in

their optimal number of lines of code. A given project may be quite successful, but still garner

fewer contributions than a less successful project of a different type.While we partially address this

concern by employing dummy variables for project type, these controls are unlikely to be perfect.

52 The Journal of Law, Economics, & Organization, V21 N1

consistently greater contributions are made to projects that are not highly re-

strictive and (on a less consistently statistically significant basis) not restric-

tive. Our interpretation of this result, however, must be cautious. After all, we

already know that quite different projects are chosen for each class of license.

We first address this concern by estimating ordinary least squares regres-

sions, in which the dependent variables are the percentile activity ranking,

the number of developers, and the number of reported bugs. We use the same

independent variables as above, except that we also add one of the measures of

license type. As Panel B of Table 12 reports, licenses with restrictive and highly

restrictive features continue to be associated with fewer contributions.

We then explore the robustness of the results in several ways. We alter the

specification (e.g., using the logarithm of the number of bug reports and devel-

opers). We also address concerns about sample selection bias in our sample:

that is, the near certainty that some firms have zero activity not because they

are based elsewhere, but rather because there really were no contributions. We

address this concern by estimating the regressions including all observations,

as well as by estimating two-stage ‘‘Heckit’’ regressions. The results continue

to be of approximately the same magnitude and significance. At the same time,

we believe that we can only partially control for the differences in project char-

acteristics, so our interpretation of this preliminary analysis must be cautious.

7. Conclusion

This article examines the scope of licensing in open source software, a topic of

both academic and practical interest. We first enumerate the various consid-

erations that should figure into the licensor’s choice of contractual terms. We

highlight how the decision is shaped not just by the preferences of the licensor

itself, but also by that of the community of users. For instance, a commercial

company releasing software to the open source community may choose a more

restrictive license because of suspicion about its ultimate intentions.

Table 11. License Type of Projects that are Corporate Spin-Offs

Regression Coefficient Standard error

All highly restrictive [7.1] 0.07 0.29

Some highly restrictive [7.2] 0.38 0.31

All restrictive [8.1] 0.32 0.34

Some restrictive [8.2] 0.46 0.37

Five-part index [9.1] 0.31 0.44

Three-part index [9.2] 0.20 0.44

The sample consists of 38,610 projects included in the SourceForge database in May 2002. The dependent variables

are the six used in Tables 7–9, including dummy variables denoting whether the licenses had highly restrictive or

restrictive provisions, as well as the two indexes of license type. The corresponding regression is denoted in brackets.

In each case, the table reports the coefficient and standard error of a measure denoting whether the project was

a corporate spin-off. Controls for the development stage, environment, intended audience, natural language,

operating system, and topic are also employed, but not reported.

The Scope of Open Source Licensing 53

The article then presents an empirical analysis of the prevalence and success

of different types of open source licenses, employing the SourceForge data-

base, a compilation of nearly 40,000 open source projects that has hitherto

been largely unexplored by academics. The results are largely consistent with

the framework in Section 3:

� Restrictive licenses are more common for applications geared toward

end-users and system administrators, but significantly less common

for those applications aimed toward software developers.

Table 12. Measures of Activity in Open Source Projects, by License Type

Panel A: Univariate comparisons of activity

Activity percentile Number of developers Bug reports

All highly restrictive

Yes 50.8 2.7 9.3

No ***53.4 ***3.5 **13.0

Some highly restrictive

Yes 51.1 2.8 9.7

No **53.4 ***3.4 *12.5

All restrictive

Yes 51.6 2.9 9.5

No 52.7 ***3.6 **14.7

Some restrictive

Yes 51.7 2.9 9.8

No 52.1 ***3.5 **14.0

Panel B: Coefficients and standard errors from regression analyses

Dependent variable

Activity

percentile

Number of

developers

Bug

reports

Coefficient

Standard

error Coefficient

Standard

error Coefficient

Standard

error

All highly

restrictive

�2.39 ***[0.92] �0.59 ***[0.12] �4.21 **[1.72]

Some highly

restrictive

�2.07 **[0.94] �0.41 ***[0.13] �3.71 **[1.77]

All restrictive �0.06 [1.04] �0.59 ***[0.14] �3.57 *[1.95]

Some

restrictive

0.13 [1.08] �0.51 ***[0.15] �3.24 [2.02]

The sample consists of 9257 projects with some software contributions included in the SourceForge database in May

2002. The variables of interest are the overall activity percentile (with 100 being the highest) that the project fell into, the

number of developers, and the total number of bugs reported. The significance level from a t-test is reported in each

case where the null hypothesis of no difference is rejected. The second panel presents the coefficients and standard

errors for the license type from ordinary least squares regression analyses with these three activity measures as

independent variables. In each case, one of the license type measures is used as an independent variable, as well as

controls for the intended audience, topic, natural language, environment, operating system, and development stage

(not reported). Standard errors are in brackets.

*, **, *** Significant at the 10%, 5%, and 1% confidence levels, respectively.

54 The Journal of Law, Economics, & Organization, V21 N1

� Applications that are consumer oriented (e.g., desktop tools and games)

are substantially more likely to have restrictive licenses. Those geared to

the software development process are much less so.

� Projects whose natural language is not English, whose community appeal

may be presumed to be much smaller, are more likely to employ restric-

tive licenses.

� Restrictive licenses are less common for projects operating in commercial

environments or that run on proprietary operating systems.

� Projects with less restrictive licenses tend to attract more contributors.

� The results continue to be robust when we employ additional specifica-

tions and control variables, and when we examine only the projects

posted early and late in the history of SourceForge.

This version of the article leaves a number of issues open, which we hope

will be explored in subsequent work. In particular, two avenues seem prom-

ising ones for further study:

� The first of these is the consequence of the choice of license on project

success. While we have taken a first look at these issues here, more should

be done. One particularly promising empirical strategy is to examine proj-

ects that have changed from a restrictive to a permissive license (and vice

versa). Ideally, looking at the reaction to license changes could be highly

revealing. While the dataset used in this article is only a cross-sectional

one, we have begun a new research project, which examines a panel of

more then 100 open source projects and their contributors. This new data-

set will allow us to undertake exactly this type of analysis.

� Second is the impact of open source license type on social welfare. It goes

without saying that a license choice that is privately optimal from the

point of view of the licensor may not be socially optimal. Some critics

have argued (e.g., Mundie, 2001) that restrictive licenses are socially det-

rimental, because they reduce the incentives to innovate. These claims,

not surprisingly, have been highly controversial. Obtaining a better un-

derstanding of these issues is an important challenge.

References
Dodd, Jeff C., and Brian Martin. 2000. ‘‘Building a Cathedral Over the Bazaar: A Preliminary

View of Certain Licensing Practices in the Open Source and Free Software Communities,’’

working paper, Mayor, Day, Caldwell & Keeton.

Gallini, Nancy T. 1984. ‘‘Deterrence by Market Sharing: A Strategic Incentive for Licensing,’’

74 American Economic Review 931–941.

Gallini, Nancy, and Brian D. Wright. 1990. ‘‘Technology Transfer Under Asymmetric Informa-

tion,’’ 21 Rand Journal of Economics 147–160.

Gandal, Neil, and Katharine Rockett. 1995. ‘‘Licensing a Sequence of Innovations,’’ 47 Economics

Letters 101–107.

Hammerly, Jim, Tom Paquin, and Susan Walton. 1999. ‘‘Freeing the Source: The Story of

Mozilla,’’ in Chris DiBona, Sam Ockman, and Mark Stone, eds., Open Sources: Voices from

the Open Source Revolution. Cambridge, MA: O’Reilly.

The Scope of Open Source Licensing 55

Katz, Michael L., and Carl Shapiro. 1986. ‘‘How to License Intangible Property,’’ 101 Quarterly

Journal of Economics 567–589.

Lee, Steve H. 1999. ‘‘Open Source Software Licensing,’’ working paper, Harvard University.

Lerner, Josh, and Jean Tirole. 2002. ‘‘Some Simple Economics of Open Source,’’ 52 Journal of

Industrial Economics 197–234.

McGowan, David. 2001. ‘‘Legal Implications of Open-Source Software,’’ University of Illinois

Law Review 241–304.

Mundie, Craig. 2001. ‘‘The Commercial Software Model,’’ available at http://www.microsoft.

com/presspass/exec/craig/05-03sharedsource.asp (accessed September 17, 2002).

Neukom, William H., and Robert W. Gomulkiewicz. 1993. ‘‘Licensing Rights to Computer Soft-

ware,’’ in Technology Licensing and Litigation 1993. Practicing Law Institute Patents, Copy-

rights, Trademarks and Literary Property Course Handbook Series no. G4-3897. New York:

Practicing Law Institute.

Perens, Bruce. 1999. ‘‘The Open Source Definition,’’ in Chris DiBona, Sam Ockman, and Mark

Stone, eds., Open Sources: Voices from the Open Source Revolution. Cambridge, MA:

O’Reilly.

Rockett, Katharine E. 1990. ‘‘Choosing the Competition and Patent Licensing,’’ 21 Rand Journal

of Economics 161–172.

Shepard, Andrea. 1987. ‘‘Licensing to Enhance Demand for New Technologies,’’ 18 Rand Journal

of Economics 360–368.

Williamson, Oliver. 1975. Markets and Hierarchies: Analysis and Antitrust Implications. New

York: Free Press.

———. 1985. The Economic Institutions of Capitalism. New York: Free Press.

56 The Journal of Law, Economics, & Organization, V21 N1

http://www.microsoft.com/presspass/exec/craig/05-03sharedsource.asp
http://www.microsoft.com/presspass/exec/craig/05-03sharedsource.asp

