Test 2 Review Compsci 101

Owen Astrachan

November 7, 2012

PROBLEM 1 : (What would Watson Say? (22 points))

Consider a list of artists as shown stored in alist:

alist = ["van Gogh", "Rembrandt", "de Kooning", "Picasso", \
"Rembrandt", "Miro", "Miro", "Miro", "Picasso"]
Part A’ (4 points)

Write Python code (an expression) to store in variable uniq the number of unique/different values in alist.
In the example above this is 5.

Part A” (4 points)

Write code to store in variable sp a list of the strings in verblalist! that contain a space. In the example
above this is the list ["van Gogh", "de Kooning"], but the expression you write will work no matter what
strings are stored in alist.

Part A (4 points)

Write code to store in many a list of those artist/names in alist that occur more than once. Your code
should work even when the strings in alist change. The order of the strings in many doesn’t matter.

Part B (4 points)



Write code to store in big the number of times the most frequently occurring name in alist occurs (this is
"Miro" for the values shown above, your code should work with any values stored in alist.)

Part C (4 points)

Write code to store in least the artist/name that occurs the fewest times in alist. If more than one name
occurs the fewest times your code can store any such name in least

Part D (6 points)

Write code to store in gallery a list of names, the unique strings in alist, sorted from least-frequently
occurring to most frequently occuring. Break ties alphabetically. For the values shown above the list returned
should be

["de Kooning", "van Gogh", "Picasso", "Rembrandt", "Miro"]



PROBLEM 2 : (clip, ship, strip, whip, (24 points))

In this problem you’ll analyze and write Python code that processes a logfile of websites visited by people
using the Duke network. The log-file has the format shown below where each line contains a netid and the
IP address of a website visited by the person with that netid, separated by a space. Such a log file represents
one day of network traffic at Duke.

ola 152.3.215.24
rcd 68.71.216.171
ola 68.71.216.171
fpg 199.239.136.200
fpg 199.239.136.200
fpg 98.142.99.33
rbo 208.179.31.37
ola 152.3.215.24
rbo 208.179.31.37
rcd 152.3.215.24
rbo 68.71.216.171
ola 152.3.215.24
rbo 152.3.215.24

The data above shows that the person with netid ola visited websites four times, three of the webpages have
the IP address 152.3.215.24 and one has the address 68.71.216.171. The person with netid rbo also visited a
website four times, three of these were different and the site 208.179.31.37 was visited twice by rbo.

The function visits below returns a list of tuples in the format (ipaddress,visits) so that the list
returned for the data file above is:

[(°152.3.215.24°, 5), (’68.71.216.171’, 3),
(°199.239.136.200°, 2), (°208.179.31.37’, 2), (°98.142.99.33’, 1)]

You can use visits as a model for code you write, you’ll also be asked to explain some of the code shown
in visits.

def visits(logfile):

visited = {} #1
f = open(logfile) #2
for line in f: #3
parts = line.strip().split(" ") #4

ip = parts[1] #5

if not ip in visited: #6
visited[ip] = 0 #7
visited[ip] += 1 #8

tups = sorted(visited.items() ,key=operator.itemgetter(1l),reverse=True) #9

f.close() #10
return tups #11

(questions follow)



Part A (3 points)

Explain in one or two sentences and at a high level the purpose of the lines labeled 6-8.

Part B (3 points)

Explain why line 9 results in the list of tuples being returned, in particular why the tuples appear in the
order illustrated by the return value shown. Be brief.

Part C (3 points)

If the variable v is initialzed via v = visits("weblogs.txt") then describe in English what the value
len(v) represents in terms of the web traffic represented by the log file.

Part D (3 points)

For the same value of v = visits("weblogs.txt") in Part C, describe in English the value of this Python
expression:

sum([x[1] for x in v])



Part E (6 points)

Write a Python function user_data whose parameter is the name of a logfile such as the one shown above
and that returns a dictionary in which the keys are each unique netid stored in the file and for which the
associated value is a set of unique website/ip-addresses visited by the person with that netid. For example,
for the key ola the associated value is the set set([?152.3.215.24°,°68.71,216.171°]) since although
ola visited a website four times, three of the visits were to the same website.

For the data file shown above, the returned dictionary is printed below.

{’rbo’: set([’152.3.215.24°, ’68.71.216.171°, °208.179.31.37°]),
’ola’: set([’152.3.215.24°, ’68.71.216.171°]),
*fpg’: set([’199.239.136.200°, ’98.142.99.33°]1),
’rcd2’: set([’152.3.215.24°, ’68.71.216.171°]1)%}

Complete the function here:

def user_data(filename)



Part F (6 points)

Write function freq_visit whose parameter is the name of a logfile. The function returns a dictionary in
which the keys are ip-addresses of each unique site in the logfile. The corresponding value for each key is a
list of tuples of the form (netid,visits) where visits is the (int) number of times the user with netid
(string) has visited the site whose ip-address is the corresponding key. The list of tuples should be sorted
such that the first tuple has the highest number of visits to the website, and the last tuple corresponds to
the netid of the fewest visits. Breaking ties doesn’t matter. For example, for the logfile above the dictionary
returned could be:

{’152.3.215.24’: [(’ola’, 3), (’rbo’, 1), (’rcd2’, 1],
’68.71.216.171>: [(’rbo’, 1), (ola’, 1), (’rcd2’, 1],
199.239.136.200°: [(fpg’, 2)],

7208.179.31.37°: [(’rbo’, 2)1,

’98.142.99.33’: [Cfpg’, 1)1}

Hint: one easy way to create the list of tuples associated with each ip-address/key is to first create a dictionary
associated with each ip-address key. This dictionary has (netid,visits) as the (key,value) tuples, i.e.,
each time a line is processed the netid is updated in the dictionary that’s the value corresponding to the
ip-address/key. After reading the file, the dictionary of (ip-address,dictionary) tuples can be changed
to (ip-address,sorted-1list) tuples by calling sorted on the items of the dictionary associated with each
ip-address key.

def freq_visit(filename):



