
Compsci 101, Fall 2012 18.1

Theory, Practice, last two weeks
  Solving * problems requires developing algorithms

Ø  How do we … [at all | efficiently | at-scale | …]

  Solving * problems requires developing code
Ø  Implementing [algorithms | ideas | …]

  What's possible? How do we know?
Ø  How do I make a resizable table-like web page using CSS?
Ø  How do I store distributed responses in a concurrently-

accessible database?
Ø  How do I sort a million 32-bit integers (see Obama)

* == computational
Compsci 101, Fall 2012 18.2

Why searching and sorting?
  Simple to understand, hard to do fast and at-scale

Ø  [do | do not] think of sorting as "arrange deck of cards"
Ø  Organizing data to facilitate [search | visualization | …]
Ø  Study named-algorithms in 201 and other courses

•  bubble sort, insertion sort, merge sort, quick sort, …

  Basics of algorithm analysis: theory and practice
Ø  How does algorithm scale, e.g., search and sort
Ø  n2 and nlog n for sorts, n, log n, and constant for search

•  What does this mean?

Compsci 101, Fall 2012 18.3

New sorting algorithms happen …
  timsort is standard on…

Ø  Python as of version 2.3, Android, Java 7
Ø  According to http://en.wikipedia.org/wiki/Timsort

•  Adaptive, stable, natural mergesort with supernatural
performance

  What is mergesort? Fast and Stable
Ø  What does this mean?
Ø  Which is most important?
Ø  Nothing is faster, what does that mean?
Ø  Quicksort is faster, what does that mean?

Compsci 101, Fall 2012 18.4

Stable, Stability
  What does the search query 'stable sort' show us?

Ø  Image search explained
Ø  Why are numeric examples so popular?

Compsci 101, Fall 2012 18.5

Binary Search
  Before the first guess, there are 1024 numbers

How many times can we divide list in half?
 log2(N) for N element list, why?

What must be true to use binary search?
 How is this done in Python?

Compsci 101, Fall 2012 18.6

Binary Search: raw mode
def binary_search(values,target):
 low = 0
 high = len(values)-1
 while low <= high:
 mid = (low+high)/2
 if values[mid] == target:
 return mid
 elif values[mid] < target:
 low = mid+1
 else:
 high = mid-1
 return -1

Compsci 101, Fall 2012 18.7

Bubble Sort, A Personal Odyssey

Compsci 101, Fall 2012 18.8

11/08/77

Compsci 101, Fall 2012 18.9

17 Nov 75

Not needed

Can be tightened
considerably

Compsci 101, Fall 2012 18.10

Jim Gray (Turing 1998)
  Bubble sort is a good
argument for analyzing
algorithm performance. It
is a perfectly correct
algorithm. But it's
performance is among the
worst imaginable. So, it
crisply shows the
difference between correct
algorithms and good
algorithms.

(italics ola’s)

Compsci 101, Fall 2012 18.11

Brian Reid (Hopper Award 1982)

 Feah. I love bubble
sort, and I grow weary
of people who have
nothing better to do
than to preach about it.
Universities are good
places to keep such
people, so that they
don't scare the general
public.

(continued)

Compsci 101, Fall 2012 18.12

Brian Reid (Hopper 1982)
 I am quite capable of squaring N with or without a calculator,

and I know how long my sorts will bubble. I can type every
form of bubble sort into a text editor from memory. If I am
writing some quick code and I need a sort quick, as opposed to
a quick sort, I just type in the bubble sort as if it were a
statement. I'm done with it before I could look up the data
type of the third argument to the quicksort library.

I have a dual-processor 1.2 GHz Powermac and it sneers at
your N squared for most interesting values of N. And my
source code is smaller than yours.

Brian Reid
who keeps all of his bubbles sorted anyhow.

Compsci 101, Fall 2012 18.13

Niklaus Wirth (Turing award 1984)
 I have read your article and share

your view that Bubble Sort has
hardly any merits. I think that it
is so often mentioned, because it
illustrates quite well the
principle of sorting by
exchanging.

 I think BS is popular, because it fits well
into a systematic development of sorting
algorithms. But it plays no role in actual
applications. Quite in contrast to C, also
without merit (and its derivative Java),
among programming codes.

Compsci 101, Fall 2012 18.14

Merge Sort: raw mode
def mergesort(values):
 def merge(low,mid,high):
 #not shown

 def dowork(low,high):
 if low < high:
 mid = (low+high)/2
 dowork(low,mid)
 dowork(mid+1,high)
 merge(low,mid,high)

 dowork(0,len(values)-1)

Compsci 101, Fall 2012 18.15

Quicksort: raw mode
def quicksort(values):
 def partition(low,high):
 #not shown

 def dowork(low,high):
 if low < high:
 pivot = partition(low,high)
 dowork(low,pivot-1)
 dowork(pivot+1,high)

 dowork(0,len(values)-1)

Compsci 101, Fall 2012 18.16

Shafi Goldwasser
  RCS professor of computer science at MIT

Ø  Twice Godel Prize winner
Ø  Grace Murray Hopper Award
Ø  National Academy
Ø  Co-inventor of zero-knowledge proof

protocols
 How do you convince someone that you

know [a secret] without revealing the
knowledge?

  Honesty and Privacy

Work on what you like, what feels
right, I now of no other way to
end up doing creative work

