
Compsci 6/101, Spring 2012 3.1

PFTW: Functions, Control, Python/Tools
  How do functions work and why do we use them?

Ø  Functions we call (APIs), Functions we write
Ø  Parameters, names, return values
Ø  Modules, functions, abstractions

  How do we alter control of execution
Ø  Conditionally execute code in certain situations
Ø  Repeatedly execute code for set # times or until condition
Ø  Blocks of code are indented, following :

•  Functions, if/else, loops, other …

  Tools used in Compsci101
Ø  Submit, APT running, webpages, help, books, LINK, …

Compsci 6/101, Spring 2012 3.2

Functions: abstractions over code
  Naming something gives you power

Ø  How do you read a file into a string?
Ø  What is length of a string? Of a list?

  We can write and call functions
Ø  Re-use and/or modify
Ø  Store in module, import and re-use functions
Ø  Import standard modules and use functions from them

  Functions can (should?) return a value
Ø  We've seen len return an int, what about file.read()?
Ø  Other functions return Strings, floats, or other types

Compsci 6/101, Spring 2012 3.3

Functions: BMI (Body Mass Index)
  What is formula? How to use it?

Ø  For one person can simply print the BMI
•  W/(H*H) * 703, W in pounds, H in inches

Ø  What if we want to validate data?
Ø  What if we want to notify folks who might need guidance?

def bmi(weight, height):
 return 703 * weight/(height*height)

if bmi(170,72) < 18.5:
 print "underweight"

call replaced by return
value, why use function?

Compsci 6/101, Spring 2012 3.4

What does return statement do?
  Programs execute one line at a time

Ø  After one statement finishes, the next executes
Ø  Calling a function causes its code to execute

•  What happens in the code that calls the function?

  The value returned replaces the function call
Ø  print math.sqrt(25.0)
Ø  if bmi(170,72) < 18.5: print "underweight"

  What if nothing returned?

Ø  None by default in Python

Compsci 6/101, Spring 2012 3.5

Re-use: Counting words in file
def word_count(filename):
 f = open(filename)
 all = f.read()
 words = all.split()
 return len(words)
if __name__ == "__main__":
 name = "/data/romeo.txt"
 print "# words in",name,
 print "=",wordCount(filename)

Compsci 6/101, Spring 2012 3.6

Running Python Program/Module
  Python is an interpreter, platform specific

Ø  So is Java, so is Android, … contrast compilers
Ø  Python can execute a .py file, need a "launch point"

  Convention in Python and other languages
Ø  Start with section labeled __main__, that's run
if __name__ == "__main__":

statements here
statements here

  Boilerplate, don't memorize, let Eclipse do work!

Compsci 6/101, Spring 2012 3.7

Nancy Leveson: Software Safety
  Mathematical and engineering

aspects, invented the discipline
Ø  Air traffic control
Ø  Microsoft word

 “There will always be another
software bug; never trust human life
solely on software” huffington post?

  Therac 25: Radiation machine
Ø  http://en.wikipedia.org/wiki/Therac-25
Ø  http://bit.ly/5qOjoH

  Software and steam engines

Compsci 6/101, Spring 2012 3.8

Anatomy of a Python function
def name(params):
 body

  Define a function, provide a name, provide
parameters, provide a function body

Ø  How to decide on name?
Ø  Do we need parameters?
Ø  What does body of function do

  Functions provide a named abstraction over code
Ø  Huh? What is math.factorial(15) "hello".upper()

Compsci 6/101, Spring 2012 3.9

Revisiting functions
  Python Heron’s formula or BMI (Body Mass Index)

Ø  What’s the name of the function
Ø  What are parameters that enable function use/call

  How do we write and test APTs
Ø  What’s the name of the function
Ø  What are parameters that enable function use/call
Ø  Who writes the function? Who calls the function?

  How will you decide on these things in writing
your own code?

Compsci 6/101, Spring 2012 3.10

Design, Implementation, Testing
  Designing Python code and functions

Ø  What do you want the code to do?
Ø  Other aspects of code, e.g., portability, efficiency, size, …
Ø  Understand how to solve a problem without computer

  Implementing design in code
Ø  Translation of ideas into vocabulary of Python
Ø  We don't have a large vocabulary, but it will grow!

  Testing code, functions
Ø  How do you know when function is right?
Ø  What confidence can testing provide?
Ø  APT testing is similar to Unit Testing (well known)

Compsci 6/101, Spring 2012 3.11

Running Python
  Can run in Eclipse Console Window

Ø  How to start? What to type?
Ø  Also run on command-line, e.g. simple Mac/Linux

  Can import code into another module/.py file
Ø  See APT examples and how to run them
Ø  Understand how your Python code is executed
Ø  Understand where Python code is and how it got there

  How do we test your code to grade it, evaluate it?
Ø  APTs: auto-test, other assignments, human-in-the-loop

Compsci 6/101, Spring 2012 3.12

Eclipse Particulars
  Supports many languages: we care about Python

Ø  PyDev perspective: Windows>Open Perspective>Other>…
Ø  Also use console: Windows>Show View>Console
Ø  Use PyDev console (right click console icon)

  Preferences are per project or per 'concept'
Ø  Interpreter for Python? Color for code? Indentation?
Ø  See Preferences (Windows/Windows, Mac/Eclipse)

  Creating projects, Python Module
  Submitting and check via Ambient

Compsci 6/101, Spring 2012 3.13

Language and Problems in Context
  Convert Spanish Wikipedia page to English

Ø  How do we convert HTML to text?

  How do you determine if 2040 is a leap year?
Ø  Any specified year is a leap year?

  How do we make an image larger, more red, …
Ø  What is an image? How do read it? Convert it? Access it?

  How do we find the BMI for everyone
Ø  What's the right tool for this? Why use Python? Why not?

Compsci 6/101, Spring 2012 3.14

What years are leap years?
  2000, 2004, 2008, …

Ø  But not 1900, not
2100, yes 2400!

Ø  Yes if divisible by
4, but not if
divisible by 100
unless divisible by
400! (what?)

def is_leap_year(year):
 if year % 400 == 0:
 return True

 if year % 100 == 0:
 return False
 if year % 4 == 0:
 return True
 return False

  There is more than one way to skin a cat, but we
need at least one way

Compsci 6/101, Spring 2012 3.15

Python if statements and Booleans
  In python we have if: else: elif:

Ø  Used to guard or select block of code
Ø  If guard is True then, else other

  What type of expression used in if/elif tests?
Ø  ==, <=, <, >, >=, !=, and, or, not, in
Ø  Value of expression must be either True or False
Ø  Type == bool, George Boole, Boolean,

  Examples with if
Ø  String starts with vowel (useful for Piglatin, e.g.,)
Ø  BMI out of range

Compsci 6/101, Spring 2012 3.16

Alan Kay
  Turing award 2003

Ø  OO programming, Dynabook

  “The best way to predict the
future is to invent it”

  “Americans have no past and
no future, they live in an
extended present.”

I think the main thing about doing …any kind of programming
work, is that there has to be some exquisite blend between
beauty and practicality. There's no reason to sacrifice either one
of those, and people who are willing to sacrifice either one of
those, I don't think really get what computing is all about.

