
Compsci 101, Fall 2012 8.1

List Comprehensions
  Creating a list from another list, two decisions:

Ø  Is new list the same size as original, or smaller?
Ø  Are elements the same or related by some correspondence?

words = ["bear", "lion", "zebra", "python"]
w2 = [w for w in words if some_property(w)]
w3 = [f(w) for w in words]
w4 = [1 for w in words if some_property(w)]

  Once we have list can apply list functions

Ø  We have: len, sum, max, min
Ø  Can "invent" others by writing functions

Compsci 101, Fall 2012 8.2

List Comprehensions Again
  Transformative approach can scale differently

Ø  Functional programming: code generates and doesn't modify
Ø  Basis for (ultra) large scale mapreduce/Google coding

w = [expr for elt in list if bool_expr]
w = [f(w) for w in list if bool_expr(w)]
w = [list.count(x) for x in range(1,7)]

  Why are abstractions important?

Ø  Reason independently of concrete examples
•  Generalize from concrete examples

Ø  http://www.joelonsoftware.com/articles/
LeakyAbstractions.html

Compsci 101, Fall 2012 8.3

Indefinite loop: while … interactivity

wrong = 0
while wrong < max_wrong:
 guess = raw_input()
 if not good_guess(guess):
 wrong += 1
 else:
 #process the guess here
  Suppose, for example, play http://www.hangman.no

Ø  What happens if you loop while True:
Ø  Break out of loop with break
Ø  See code in GuessNumber.py

Compsci 101, Fall 2012 8.4

Edsger Dijkstra
  Turing Award, 1972
  Algol-60 programming language
  Goto considered harmful
  Shortest path algorithm
  Structured programming
 “Program testing can show the presence of

bugs, but never their absence”
For me, the first challenge for computing science is to discover how to
maintain order in a finite, but very large, discrete universe that is intricately
intertwined. And a second, but not less important challenge is how to
mould what you have achieved in solving the first problem, into a teachable
discipline: it does not suffice to hone your own intellect (that will join you in
your grave), you must teach others how to hone theirs. The more you
concentrate on these two challenges, the clearer you will see that they are
only two sides of the same coin: teaching yourself is discovering what is
teachable EWD 709

